
Automating Process and Workload Pathology Detection

Ron Kaminski
Safeway Inc.

There is no perfect code, and the chance for unintended and resource-intensive misbehavior
increases with complexity. We call these miscreants “pathological processes”. Pathological processes
are present on an astonishing number of systems and they account for a significant percentage of the
user-perceived problems that generate requests for performance investigations. The combination of
shrinking IS budgets, lowering (or non-existent) capacity planning head count, increasing machine
count and ever-increasing software complexity means that while a well trained, experienced analyst
could discover these problems, it is impossible to examine every machine in depth on a regular basis.
The good news is that many of the most common pathologies have resource consumption signatures
that can be automatically recognized. Once pathologies are found, modern e-mail, problem ticketing
and web interfaces can speedily notify the code owners who can address the issue, often before they
or their end users notice a performance impact. This paper presents examples of pathologies we have
successfully detected, provides formulas we use to find them, offers some programming hints that we
picked up the hard way and ends with a challenge to the reader to define, find ways to detect, and
publish other process pathology signatures for the common good.

1 Introduction – The problem is massive

Senior capacity planning and system
performance consultants are often tasked to find
and resolve problems in emergency situations
where there is a bottom line impact. About 35%
of the time, the client’s problems are due to
undetected, miscreant processes consuming
huge amounts of resources for no practical
business reason. Often, the real solution is to
simply stop the offending processes and fix the
code, thus avoiding the million-dollar hardware
expenditure that the client was expecting.

If the client originally asked for a workload
growth study, the prudent analyst must now find
a sample without process pathologies as a base
for their analysis and models. Engagements
tend to lengthen when it is difficult to find a
period when “happy users” were acting as they
would on a well-behaved system.

Any good performance analyst has seen so
many examples of these process pathologies
[Smith and Williams, 2001, 2002] that they can
recognize them just by looking at a consumption
graph, appearing as a “guru” to the uninitiated.
In reality it is astonishingly simple to detect these
pathological processes, once you know what
data to collect and what to look for.

While working as a consultant, there is little
reason to staunch the flow of easy money rolling
in due to these process pathologies. However, at

some point, the allure of consulting may wear
thin and you may find yourself at a huge site, as
an employee, with different motivations.

As a new capacity planner, you are often flooded
with their backlog of issues, and once again, a
significant number of them are caused by
process pathologies. While your new boss will
be impressed by your ability to spot process
pathologies, at some point you may tire of the
huge queue of requests that are preventing you
from doing the things you want to do, like writing
CMG papers. You will begin to look for ways to
automatically detect and possibly trouble ticket
these pathological processes.

This paper will discuss pathologies we have
found, our methods of automatically detecting
them and hints to use if you plan to follow our
example. The challenge to you is - “Find more,
and publish!”

1.1 Getting Started

To find process pathologies, you need
information about process resource
consumption. You will also need some method
to analyze all that data, be it a vendor product, a
spreadsheet or a language you are comfortable
with, such as perl.

The availability and accuracy of these metrics
varies wildly by operating system, and how they
were obtained. You can spend many years

gaining a deep understanding of the
mathematical and programming complexities
involved in metric collection

Collecting data efficiently and with
mathematically valid sampling and
summarization methods is a task that can easily
overwhelm large teams of people. For most
time- and personnel-constrained shops, the
answer will be purchasing vendor-supplied
collectors that can help you collect, reduce and
use the data for reporting, modeling and provide
other useful analysis tools. To be sure, you may
add some custom functions, but first find a good
collection and tool vendor and there will be less
to do.

If you do choose to go it alone, be sure to keep
collection overhead low. Performance problems
can often be caused by the rotten code used to
look for performance problems. Also, understand
what is being collected, and what is not and
then, calculate the capture ratio, which is…

the sum of all allocated process’s consumption
the machine’s total consumption

…in each of the sample periods. On most UNIX
systems, these calculations demonstrate that
you need to run accounting and post process it
against your periodic collection technique (most
try ps) and then, for each process, in each
period, calculate when and where all those CPU
seconds and IOs went. Yuck! Those vendor-
supplied solutions are starting to look a lot more
attractive, aren’t they?

The biggest surprise that most analysts face is
that the vast majority of numbers that spew from
the various operating systems (and many tools)
are virtually useless, somehow flawed, or
computed in error-prone ways. Concentrate
initially only on total process CPU and IOs
during a sample interval. Focus on automating
the easy “wins”, saving time to pursue the
esoteric problems later.

1.2 What are Process/Workload Pathologies?

Let’s start with the hypothesis that generally,
process/workload resource consumption should
correlate with the volume of business functions
performed. If a process or group of processes
(workload) don’t behave this way, something is
wrong. An example might help.

Figure 1 shows a problem-free week on a two
CPU e-mail processing system. Far more e-mail
is sent during normal working hours and to a

lesser extent, during hours when people are
awake on the weekends. If the resource
consumption on the system follows this pattern,
we can surmise that at least some of the
processes do not fit our definition of
“pathological”.

Figure 1, A Normal Week

Sadly, not all weeks are normal on this system.

Early in the next week, (Figure 2) someone
“improved” a system utility, adding a check that
reads a growing log file. Around lunch on
Wednesday the 16th, an operator abnormally
exited a utility, and thought nothing of it.
However, his process lived on as a CPU loop,
perpetually trying to find him until the machine
was rebooted (due to performance complaints) a
week later.

Figure 2, A Ramp Starts, A Loop Thrives

After the reboot on Wednesday the 23rd, the
“improved” utility continued to read an ever-
larger log file to examine the last record. No one
noticed it.

C
P

U
s

C
P

U
s

C
P

U
s

Another operator caused more loops the next
week, on Monday the 28th and again on
Tuesday the 29th. Then mail really slowed down
for ten days! (Figure 3)

Figure 3, A Loop, Two Constrained Loops
And A Big Ramp Grows Bigger

On Thursday the 8th, the loop was identified and
“the problem” was “fixed”. But mail still seems
slow, and appears to be getting worse each day.
Hey! Why does that “improved” system utility
seem to increase its CPU utilization each day?

This example is based on historical consumption
data (and user complaint calls!) from several
actual systems, combined to show what can
happen due to pathological processes that
remain undetected. Some pathologies are
violent, halting desired processing; these are
usually immediately detected, but many lurk
undetected, accumulating more and more
expensive machine resources, adding more and
more delay to the end user’s response time. An
outage might occur many days after the event
that spawned the problem.

Without methods to isolate individual process
consumption, these loops and ramps might have
never been found. Whenever you hear phrases
like “We boot this system once a week or it stops
working”, you have a big clue that what is really
happening is that they are clearing out repeated
buildups of undetected pathological processes.
Wouldn’t it be nice to isolate and eliminate the
problems and the weekly outages for reboots?

In each of these cases, with 20/20 hindsight, we
can say that the pathological processes are
processes that consume resources in amounts

either negatively correlated with business usage
or in a pattern all their own.
1.3 Common Pathologies

There are many common process pathologies;
the following is not an exhaustive list:

The Simple Loop - The simple loop is a process
that takes over an entire CPU’s worth of
processing for each period it loops. Usually, a
simple loop resides on a multiprocessor server

with a lot
of excess
capacity,

so it can
continue

for a long
time. It
may act

normally
for a period, then start looping due to some
unique code path or environmental change. 99%
of the time a loop will continue indefinitely. In
figure 4, note how the first loop started on the
12th and continued until stopped late on the 14th,
but because they addressed the symptom and
not the cause, it recurred on the 15th. That’s why
repeated (we use daily) trouble tickets are great.
Eventually, the programmers get sick of them
and fix something.

Note that loops do not have to stay in one CPU
to be loops. In most modern, multi-processor
operating systems, the loops will happily switch
from one processor to another, unless someone
programmatically locks the process into one.
Then, it efficiently avoids context switches and
loops even faster!

The Hum This one is controversial, but we
believe that when consumption rises above

certain
thresholds,

it is a
pathology.

Some
processes

are written
to check an
input queue
of some sort

for work, process any found, and then wait a
bit before trying again. Sometimes, this is
horrendously inefficient code, or someone
reduces the wait interval to very low values in
hopes of “improving performance”.

In any case, the process consistently consumes
significant system resources even when there is

C
P

U
s

C
P

U
s

Figure 4, A Simple Repeated Loop

Figure 5, The Hum

no real work for it to do. A lot of web-servers or
processes whose roots are in older, non-event
based systems are saddled with these. An
extreme hum (we call it a shriek) looks a lot like
a loop.

The Constrained Loop – In the mail system
example, the single original loop could get all the
resources it wanted, and it consistently took
them. Starting on the 29th, and continuing until
the 8th, there were more loops and real work
than available resources, so the system
saturated, assuring that the looping process
cannot monopolize the CPU. Simply put, a
constrained loop is any loop that, due to
competition for scarce resources, can’t get an
entire CPU to itself, so it grabs all it can.

Figure 6, Three Constrained Loops On A
System With Significant Real Workload

In the figure 6 above, there are three gray
constrained loops on top of some real work.

Constrained
loops don’t
have to be
caused by

competition
from real
work. We
have found
unused, yet

completely
saturated

Development systems with more loops than
processors.

The Simple Ramp – In our mail system
example, the “improved” system utility is a great
example of a ramp. It, like most ramps, results
from a bad programming decision such as
reading to the end of a file to get the last record,
and forgetting that this file is going to get huge
over time. The impact of bad programming
choices like this are almost never found in
development, because the test cases are rarely
at production sizes. Memory leaks can also form
ramps when you chart the total memory
allocated over time.

Figure 8, The Simple Ramp

Ramps can have many different slopes. Single
day ramps are often easy to see. Slowly
increasing multi-day loops like the example
above are insidiously creeping up a little bit at a
time and are often missed. We recommend
looking at both short term (daily) and long term
(monthly+) views of process resource
consumption to detect these.

The Bumpy Ramp – Most ramps are really
bumpy ramps, which are ramps that do have
periods of negative slopes. How can this be?

Figure 9, The Bumpy Ramp

Imagine a process with a slow memory leak.
During normal processing, it allocates memory
due to real demand and then frees it. Often this
pattern follows business use. If the leakage rate
is smaller than the de-allocate rate when
business demands fall, you will have periods of
negative slope. Left undetected, this one will
eventually become a problem.

Bumpy ramps are usually due to a single
continuous process, but if the process is reset or
terminated and then restarted, you really have
an example of …

Figure 10, The Saw Tooth

The Saw Tooth – Ramps that reset periodically
show up as a “saw tooth” utilization profile. If a
response time increase or service interruption

0

1

2

Time

C
P

U

C
on

su
m

pt
io

n

0

1

2

Time

C
P

U

C
o

n
su

m
p

ti
o

n

0

1

2

Time

M
em

o
ry

C

o
n

su
m

p
ti

o
n

0

1

2

Time

C
P

U

C
o

n
su

m
p

ti
o

n

Figure 7, Five Loops
No Real Workload

0

1

2

Time

C
P

U

C
o

n
su

m
p

ti
o

n

happens at the peaks, such as a disk filling up
unnoticed we define it as a pathology. Since
multiple processes can contribute to the growing
ramps, this is often a workload pathology. Often,
the reason people do not detect pathological
“saw tooth” patterns is that they are examining
too small of an interval, or too few. Growing log
files, database rollback segments filling disks,
and repeated memory leaks are often sources of
saw tooth patterns. This may take time, but once
diagnosed, the cure can be obvious.

Many More – Any process that requires
repeated human intervention to detect and
correct might be a workload or process
pathology that we can automatically find.

2 The Challenge

Devise simple algorithms that efficiently detect
process pathologies from data sources.

We repeatedly tried and failed to find “absolute”
algorithms that found all problems. Our
breakthrough came when we decided to divide
and conquer, i.e. develop simple algorithms to
find one type of pathology, most of the time. It is
okay to miss a few. You will be quite busy with
the ones you do find. Later, as things calm
down, try more complex strategies.

2.1 Rules of the Chase

Ideally the solutions would:

• Follow a “single data collect, multiple
use” doctrine

o Collect process data
o Turn on accounting if needed

• Embrace simplicity
• Find a large percentage of the problems
• Provide most, if not all, information

needed to address the pathology at the
time of notification.

• Embrace parameter files to minimize the
need to change code; it is error prone
and tedious

• Embrace fuzzy logic, if needed.
Example: If a process meets 3 of 5
criteria, it might be a pathology

• Use tools that are commonly available,
the cheaper the better

o Perl rules!
o Spreadsheets are ubiquitous,

but macros can be tough to
keep running long term

• Combine notifications into a minimal set
of messages

o Limit numbers of email
notifications

• Consider a FYEO (For Your Eyes Only)
class…

o Don’t write tickets for yourself
• Run private (FYEO) for a while before

going public.
o Nothing is worse than false

positives!
o Build guru status by

mysteriously finding all this
weird stuff that everyone else
misses!

• Denny’s Law - Never alert on something
that you can’t explain to someone paged
at 3:00 AM. [Brewer]

• Ron’s Law -Never add over a thousand
nodes to your automated check system
on a Friday afternoon or before you take
a vacation!

2.2 Criteria for Success

• It is not a “who’s method is better”
argument. If your method works at all in
your situation, it is a great method!

• Strive for low, or no, false positives
• Seek simplicity, low resource

consumption, and elegance
• Always code for exceptions! Always!

Notification fatigue due to repeated false
positives will kill your effectiveness!

• Write for the whole world; comment your
code

• You don’t have to be perfect! You just
have to try

Our perl-based solution checks all processes
during all hours on all 2000+ nodes and
averages about three seconds per node.

3 How we currently do it

At Safeway Inc., we run automatic process
pathology detection tests on nearly 2000 AIX,
LINUX, Solaris and various flavors of Windows
distributed systems nodes each day. It is not
uncommon to find 8-12 pathologies every day,
and sometimes many more! Since we started
noticing and alerting automatically, our requests
for in-depth performance investigations have
dropped off dramatically. It is nice to spot a
problem before the users do!

Start a new test on a subset of nodes, and widen
it out when it is proven. Run FYEO for a while,
and do the pre-training, then warn the support
staff about what is coming. Expect to spend
significant phone time explaining why the

programmer on the other end of the line should
care about the problem. Graphic evidence
accompanying your calm, yet firm, explanations
is indispensable, so get good at generating
graphs quickly.

3.1 How To Detect The Simple Loop

Theory: A process that uses an entire CPU for
an extended period of time is often not desirable.
Detect and report loops that exist for extended
periods of time

Practice: The real world is less pure. The simple
loop is a great place to start, because there are
so many of them.

When you start hunting you will quickly notice
that it is almost impossible for a process to get
100% of a CPU, indeed, on some operating
systems, a loop would be lucky to get 87%.
Once we decided to forget precision and learn to
love brute force, we found that specifying a
mean and allowable variation worked quite well.

Exception Note: Whatever automated checks
you do, and especially in the case of Simple
Loops, you will encounter exceptions. Program
in exception handlers from the start, or expect
embarrassing interruptions in notification while
you wrestle with your code. In our shop, we have
several statistical packages that run off “in
memory” databases to calculate amazing things
that enable us to serve you better. These can
run for many hours, and they look a lot like a
loop. Discussions with the analysts that run them
helped us find that they also can get stuck on
bizarre queries, and the analysts wanted to be
notified when that happened. Working together,
we decided that any time one of these loops ran
for 16 or more hours out of 24, it deserved a
ticket. With this exception in place, there are no
“false positives”, and resources aren’t wasted on
runaway queries any more.

Some multithreaded database processes that
are just busy enough can look like loops at the
process accounting level. Be ready to find
exceptions with processes like sqlserver.

Parameters We Use: Earlier in “Rules of the
Chase” we mentioned that you should probably
approach these searches via parameters. Here
are the ones we use for simple loops:

o Function (process_loop)
o Operating System (AIX, HPUX, Linux,

Solaris, WindowsNT, Windows2000, etc)
o Allowed Deviation%

o Loop Mean
o Example: 0.05 Allowed Deviation

with 1.00 Loop Mean finds any
process whose CPU consumption
was between 95% and 105% of an
entire processor

o Why a lower and an upper limit?
§ The lower says “at least this

busy”
§ The higher says, “no busier

than”, and helps weed out
busy multi-threaded
processes like sqlserver.

o Greater than 1?
§ It happens. Remember,

when sampling computers,
there is always sample
error, and sometimes there
can be more CPU attributed
to a process than there
were seconds available.

o Calculation method (span i.e. it must loop for
a span of time)

o Hours per day to qualify (i.e. the process
must loop for at least 8 hours in 24 to
trigger)

o Output choice (mail, trouble ticket system or
file, node history file, other)

o Loop File name (if written to a file) or
whatever method you use to interface with
your trouble ticketing system

o Mail Recipients

Actual Loop Checker Parameter Examples:

o process_loop,Linux,.05,1,span,8,summary_mail
node_history trouble_ticket,
/a_directory/ticket_logs/loops,ronmail\@the_firm.com
linux_dudemail\@the_firm.com

o process_loop,Windows2000,.08,0.92,span,8,summary_
mail node_history trouble_ticket,
/a_directory/ticket_logs/loops, ronmail\@your_firm.com
dennymail\@your_firm.com

Parameters We Use for Loop Exceptions:

Exception handling for “Simple Loops” is easy!
All you need to do is add hours.

Example: If a normal loop triggers at 8 hours in
24, this one has to loop for 8 more (16 total)
before it triggers. What happens if you add 24,
or any number higher than (24-(hours-per-day-
to-qualify))? The process never triggers.

o Function (process_loop_exception)
o Operating System (AIX, HPUX, Linux,

Solaris, WindowsNT, Windows2000, etc)
o Exception process name
o Additional hours needed to qualify as a loop

Actual Loop Checker Exception Examples:

o process_loop_exception,AIX,DISGUISED_NAME,8
o process_loop_exception,WindowsNT,sqlservr,12
o process_loop_exception,Windows2000,sqlservr,12

That looks pretty simple, doesn’t it?

3.2 How To Detect The Constrained Loop

This one was tough. We found our first test case
by examining a node somewhat infamous for
Simple Loops that had not triggered any lately.
What we found resembled the example
presented earlier in the paper (see Figure 6), a
saturated node, with more loops than available
processors. Since a process likely to loop might
choose to do it a lot, you need to find these.

Theory: A process that would use an entire
CPU for an extended period of time (if it were
not prevented from doing it by competition) is
often not desirable. This competition originates
from both real work and often other constrained
loops. Detect and report loops that exist for
extended periods of time

Practice: There are at least two types of
Constrained Loops with very different properties!
There are different ways to check for each type.

Kibitzing: Why doesn’t the Simple Loop checker
find them? Why not lower the mean and widen
the spread?

Answer: There are infinite special cases that
wreak havoc on any attempt to find Constrained
Loops with large spans around a mean, and the
number of false positives will be substantial.

Exception Note: We use the exact same code
to check for exceptions and to notify for all loop
types.

Finding Constrained Loops When Real Work
Is Present on the Node Along With Loops:

The initial idea was that on a node with
significant real work, constrained loops would all
consume roughly the same resources and have
a negative correlation coefficient [Ding,
Thornley, Newman, CMG2001] when compared
to actual work and a highly positive one when
compared to each other. This puts you in the
unhappy position of trying to find an automatic
way of deciding whether each and every process
is a loop or a good one, before deciding if they
are loops.

So, keep it simple, and just look for high positive
correlations. This turned out to be amazingly
effective. The computational load of computing
correlation coefficients for every process pair
was daunting, so we developed a simple crutch.
There could be infinite loops, each using a tiny
bit of CPU, and we had ways of detecting them
at that point. So, as a first filter, reject any
process record that consumed less than 10% of
a CPU during an hour. Then, compute unbiased
correlation coefficients on the remaining small
number of process pairs and list as “probable
Constrained Loop” any two processes that have
a correlation or 0.66 for enough hours out of 24
(we use the Simple Loop value for that OS).

Incidentally, 0.66 is pretty conservative. Most
“Constrained Loops When Real Work Is Present
on the Node” pairs correlate at or above 0.9.
With those simple filters in place, we find almost
all Constrained Loops and suffer almost no false
positives. Seems easy, doesn’t it?

Finding Constrained Loops When Real
Variable Work Is Not Present on the Node
Along With Loops: It turns out that if you have
more loops than available processors on an
otherwise dormant or static machine, the
correlations between process pairs is essentially
a chaotic number between –1 and 1.

We were finding all the Constrained Loops on
nodes where there was real processing demand,
and those were likely to be the ones we were
most interested in. Still, we want to find them all.
Here’s an example that shows our results.

Imagine an otherwise dormant two-processor
machine with five Constrained Loops on it. Each
of the five Constrained Loops was getting about
40% of a single CPU over time. However, when
closely examined, you will see small variations
as the loops wrestle control from each other.

Figure 11, CPU Used By Five Constrained
Loops on a Two-Processor System

Since all of the means are so close, and the
variances are so small, the process of
computing correlation coefficients causes these
small variations to take on undue significance,

0

10

20

30

40

50

Time

C
P

U
 C

o
n

su
m

p
tio

n

and the result is that correlation coefficients
aren’t high and positive, they are all over the
place.

We can’t use those correlation coefficients to
find Constrained Loops on dormant systems!

But, we can take advantage of their close
means. If the process consumes more than 10%
of a single CPU during an hour, and its value lies
within two standard deviations (plus or minus) of
the mean of another suspect, tag it as a
probable. If two processes meet this test for
enough hours in a day (again, use the number
for that OS from the Simple Loop parameters),
then send mail to the capacity planners. So far,
this simple “clustering” detection method has
worked exceptionally well, but try it for a while to
make sure that there are no lurking unforeseen
special cases. We recommend that you try new
detection methodologies in a stealth mode too.

Loop Wrap Up: Hopefully this demonstrates
that via relatively simple formulas acting on
minimal metrics, you can find almost all of the
CPU loops plaguing your systems.

3.3 How We Detect The Ramp, at least so
far…

There is one process present on most of our
systems that has a history of slow “Bumpy
Ramp” behavior. Left to its own devices and
given enough time, it will take over an entire
machine. That process is the model for the ramp
in our example, but it is a lot bumpier.

All
formulaic
attempts

that we’ve
tried so far
are mired

in
complexity.
Depending

on the ratio
of “bumpy ramp behavior”, slope, and number of
periods easily available to examine, different
formulas work or fail. High slope ramps are easy
to find, subtle slope ramps are really tough. How
do you distinguish between a ramp’s slope and
another valid workload whose slope is
mathematically exactly the same during some
periods?

Ramps do have one “easy to see” quality.
Eventually, they grow past any threshold you
want to set. You must identify and set thresholds

for key workloads or processes. That said,
automatically detecting a problem on 50 nodes a
day and sending daily alerts can sure focus
attention on a widespread problem. Also, it is a
trivial matter to decide on a maximum value that
a given workload should be allowed to consume
on a machine and alert when it exceeds it.

For example, if all Tools (monitors, collectors,
anti-virus, backup and restore activity, disk
defraggers, etc.) are in one group, it is easy to
make a statement like “The Tools workload
should never take more than 10% of any box”. It
is recommended that you run this one FYEO or
in stealth mode (ours still is), notifying only
select individuals. You may be amazed at how
much your Tools infrastructure is eating your
total infrastructure.

4 Summary – Join The Hunt!

You should now be convinced that automatically
finding process pathologies is relatively easy to
try, and has the potential to seriously improve
the end user’s experience and reduce your
investigation workload. While we’ve given
examples of finding the “usual suspects”, with
both supremely accurate mathematical precision
and kludge methods, we are convinced that
many more pathologies are out there waiting for
some bright individual to discover their simple
detection algorithms.

A good ramp detector would be particularly
useful for detecting memory leaks and slow
ramps that sneak up on you. We are devoting
serious energy to this one and will happily
cooperate in testing algorithms that look
promising.

If multiple people contribute working ideas, we
are willing to post the underlying code/algorithms
to some public place, for everyone’s use. This
paper is a first step in that process, and I eagerly
expect further research and discussion in this
area. Please feel free to contact the author
regarding coauthoring new process pathology
detection papers, possibly helping test your
ideas against our mountain of process data, or
even just telling you about the disaster that we
created when we tried “that” idea. Let’s get
started!

C
P

U
s

Figure 12, The Lurking Ramp

5 Appendix: Formulas! Pseudo-Code!

Perhaps picking the precise way we did it from
the text is not your favorite method. Try this:

Where:

dos = allowed deviation for that operating
system

loopthreshold = number of hours in your review
period required to qualify as a loop
(we use 8)

mos = loop mean for that operating system
mlow = mos – dos

mhigh = mos + dos

pcpu = CPU consumed by a unique process
pn

cpu = CPU consumed by a unique process n
phours = number of hours in your review period

that pcpu looped
pexception_hours = the additional hours needed for a

pcpu on the exception list to qualify
as a loop. Note that when loopthreshold +
pexception_hours >= total periods, this
process will never trigger a loop!

σpncpu= standard deviation of CPU
consumed

by a unique process n during the hours
where both processes existed.

µn
cpu= computed mean of the CPU consumed

by a unique process n during the hours
where both processes existed.

Note: We usually examine 24 one-hour periods
each day.

Detecting Simple Loops:

If (pn
cpu >= 10% of a CPU on that machine)) {

 If ((the machine is not saturated) {
 For each pcpu {
 phours = 0
 For each hour {
 If ((pcpu >=mlow) and (pcpu <=
mhigh))
 then phours = phours + 1
 }
 If (pcpu‘s process name is on that
 operating system’s exception list) {
 loopthreshold = loopthreshold + pexception_hours

 } else {
 loopthreshold = normal loopthreshold

 }
 if (phours >= loopthreshold) then it’s a loop!
 }
 }
}

Detecting Constrained Loops:

For All Constrained Loop Types:

If ((pn
cpu >= 10% of a CPU on that machine)

 and (the machine is saturated)) {

… pn
cpu is put on the review list for that hour.

With real variable work present
(Correlation Coefficient):

 COV (p1
cpu, p2

cpu)
C(p1

cpu, p2
cpu) = ---------------------

 σp1cpu σp2cpu

…which yields a number between –1 and 1.

If (C(p1
cpu, p2

cpu) is >= 0.66), it’s a constrained
loop!

For a much better description of computing
correlation coefficients, see [Ding, Thornley,
Newman, CMG2001], which is what I used.

With no real variable work present
(Mean and spread):

If the previous formula didn’t find any, you either
don’t have constrained loops or the competing
work is non-existent or extremely consistent, like
a hum or a shriek. Try this:

If (p1
cpu >= (µ2

cpu - 2σp2cpu) and
 (p1

cpu <= (µ2
cpu + 2σp2cpu) {

…you probably have a suspect.

This is simply a test to see if your suspect
process’s mean consumption is within two
standard deviations of another suspect’s mean.

Detecting Ramps:

If (pcpu >= threshold) {
 …notify someone!
}

Errata:

If ((pn
cpu >= 10% of a CPU on that machine) is

just a simple culling technique to reduce
computing correlations for insignificant
processes.

One really tricky bit is that you must remember
that you have to re-compute µ1

cpu, µ2
cpu, σp1cpu

and σp2cpu each time for each pair, including
only the hours where both members of the pair
qualified as loops. Suspect this when your
computed correlation coefficients exceed +-1.

Also, one hole in this method occurs during
spans of time when the number of loops keeps
changing. Imagine a node where a new
constrained loop joins in frequencies shorter
than your aggregation interval (we use an hour),
and randomly someone kills some. This will
wreak havoc on your correlations. We do have
three issues in our favor here, 1) this is
extremely rare, 2) a node adding loops this fast
will saturate and you’ll quickly notice it for other
reasons, and 3) we don’t have to be perfect, we
just have to try!

I only said it looks simple, remember?

6 References

[Smith and Williams, 2001] C. U. Smith and L. G.
Williams, “Software Performance Antipatterns:
Common Performance Problems and Their
Solutions” CMG 2001 Proceedings, Vol 2, pp
797-806, Anaheim CA, December 2001

[Smith and Williams, 2002] C. U. Smith and L. G.
Williams, “New Software Performance
Antipatterns: More Ways to Shoot Yourself in the
Foot” CMG 2002 Proceedings, Vol 2, pp 667-
674, Reno NV, December 2002

[Brewer] Denny Brewer, fellow capacity planner,
master of automation, whose sage wisdom,
implacable attention to detail and good-humored
patience makes all this work possible.

[Ding, Thornley, Newman, CMG2001] Yiping
Ding, Chris Thornley and Kenneth Newman, On
Correlating Performance Metrics, CMG 2001
Proceedings, Vol 1, pp 467-477, Anaheim CA,
December 2001

Yiping, Chris and Kevin’s papers are great
resources for formulas and precise and concise
descriptions of how to apply them.

A special thank-you to Denise Kalm, the best
CMG paper mentor and editor you could hope
for. This paper is 200% better due to her efforts.

7 Legalese

Any process names, product names, trademarks
or commercial products mentioned are the
property of their respective owners.

All opinions expressed are those of the author,
not Safeway Inc. Inc.

Any ideas from this paper implemented by the
reader are done at their own risk. The author
and/or Safeway Inc. assumes no liability or risk
arising from activities suggested in this paper.

Work safe, and have a good time!

