
Automating Process and Workload
Pathology Detection

Ron Kaminski

Safeway Inc.

Introduction
• Who is this Ron Kaminski anyway?
• The CMG2003 presentation
• Glimpses of our reporting system in action
• Even more material on ramps, and why you

should care about them
• Contact information slide at the end

– ron.kaminski@safeway.com
• pdf of the paper
• Example website
• Example perl and css

Ron Kaminski

• Director of Capacity
Planning and
Performance Analysis at
Safeway Inc.

• Responsible for modeling,
problem investigation and
performance studies on
over 4,100 midrange *NIX
and over 25,000 PCs in
1800 stores nationwide

Ron’s Problem
• No staff, existing staff shrinking
• Too many machines to even look at, much

less analyze
– Over 600 back-stage *NIX machines
– 1800 stores, and each has

• 2 SCO Point Of Sale controllers
• 12-18 PC’s handling all payroll, time clock, benefits

and training processing
• More coming

– Signature Capture
– Bio-terrorism attack, I’m not kidding!

Ron’s Solution
• Humans don’t scale
• Drastically reduce reporting cycle times
• Answer the four main questions, every time

– Do I need to buy CPU?
– Do I need to buy Memory?
– Are Disk Changes needed?
– How are Workload Response Times changing?

Ron’s Solution
• Automate Process Pathology Detection
• Provide consistent views across machines

and over time.
• Always provide historical context
• Generate graphics and reports on demand

The Problem Is Massive
• About 35% of the machines I’ve done studies on have

undetected miscreant processes
– Looping processes
– Runaway SQL queries
– Ramping up consumption as problems proliferate
– Single threaded applications with runaway queries

• While there are many threshold monitors out there, most
do not have the information or the historical context to
discover process pathologies

• You can see them if you know what to look for, but
– There are too many machines to look at!

What Is a Process or
Workload Pathology?

• Defining normal and abnormal consumption
– Hypothesis 1: In interactive online

environments resource consumption should
vary with transaction load

– Hypothesis 2: Even when batch jobs are
present, a single process seldom should take
an entire CPU for extended periods of time

• If it is valid processing, shouldn’t it break for IOs
now and then?

What Is a Process or
Workload Pathology?

– Hypothesis 3: It is rare for valid business data
processing to consume resources (CPU, Memory) in a
steady ramp upwards for extended periods

• Processes or workloads whose resource
consumption breaks any of these hypotheses is
judged abnormal, a potential pathology

• You have to check
– Every machine you have
– Every process
– Every day

Pathology Hunting Prerequisites

• You’ll need:
– A method to collect process resource consumption information

which lets you look for:
• Loops
• Constrained loops
• Memory leaks
• Bizarre behavior

– Deep understanding of the operating system
– Secondary analysis and graphics production tools

• Perl
• Spreadsheets
• Vendor analysis products

Pathology Hunting Prerequisites

• Don’t underestimate the difficulty of creating a collector on
your own
– Mathematically valid random sampling is really tricky

• Huge teams work for years on collectors
– Many operating system numbers are not even close to what they

claim to be
– Often you are stuck with an OS vendor’s number which was

incorrectly sampled!
• Most of us will buy a commercial collector
• Know your capture ratio

What you can allocate to specific processes
The total consumed on the system

Typical Pathology Example
• A normal, problem free week on

a two processor mail system
• More mail is sent during

daylight hours
• Less mail is sent on weekends
• Utilization peaks near 50%
• Response time is good
• Utilization follows transaction

volume

Week 1, Normal
No Pathologies

Yet…

Typical Pathology Example
• Early in Week 2, someone

“improved” a system utility
– They adding a check that

reads a growing log file
• Around lunch on the 16th, an

operator abnormally exited a
utility
– Their process lived on,

valiantly looping, trying to
find them

• Daily performance complaints
began arriving

• A system reboot on the 23rd

seemed to help
Weeks 2 & 3, A Ramp
Starts, A Loop Thrives

Typical Pathology Example
• Around lunch on the 28th,

an operator abnormally
exited, leaving another
loop

• The did it again the next
day!

• User performance
complaints rose
dramatically

• A reboot on the 8th helped,
but…
– performance still seems

worse than last month!

Weeks 4 & 5, A Loop,
Two Constrained Loops
and a Ramp gets bigger

Typical Pathology Signatures

• A node that “needs a reboot” regularly
– You are just clearing out built up pathologies!
– Until you find them, you will be rebooting forever

• Should you keep bailing or fix the leaky boat?

• Tip-off phrases
– “We don’t have time to fix every little…”
– “The performance problems on the server are not in my

project’s scope”
• User complaints come in waves

Typical Pathology Signatures

• Pathological processes and workloads consume
resources in amounts either negatively correlated
with business usage or in a pattern all their own

• Lets see some pathology patterns!

The Simple Loop
• Signature:

– A single CPU high “fence”
of consumption

– Often IOs are minimal
– Ends with process

termination
• Resolution often

inadvertent, like reboots
– Often repeat
– Will switch processors on

most modern operating
systems

– Easy to see if graphed
versus number of CPUs

The Simple Loop with
natural repeats

The Hum

• Signature:
– Consistently consumes a lot

of resources
• Even when there is no

work to do
– Often “web” code or any

with “look for work” loops
• If we look more often,

it’s better, right?
– Severe “Hums” are called

“Shrieks”

The Hum

Multiple Constrained Loops
With Real Work Present

• Signature:
– A loop that can’t get a whole

CPU due to contention
– Node is often saturated
– Often occur in multiples that

have high CPU usage
correlations

– Undetected “Simple Loops”
build up and become
Constrained Loops if given
time

0

1

2

C
PU

 C
on

su
m

pt
io

n

Three Constrained
Loops with Real work
Present

The Constrained Loop
With No Real Work Present

• Signature:
– All the Constrained Loop

with Real Work Present
issues except…

• CPU Usage Correlations
are usually awful

Five Constrained
Loops with No Real
work Present

0

1

2

C
PU

C

on
su

m
pt

io
n

The Simple Ramp
• Signature:

– Almost continuous
increases in resource
consumption when
unconstrained

– Common causes
• Reading growing logs
• Queue entries not being

deleted when completed,
building up ever
increasing work for the
queue manager

• Simple memory leaks

The Simple Ramp

0

1

2

C
PU

C

on
su

m
pt

io
n

The Bumpy Ramp

• Signature:
– A lot like a simple ramp, but

with (usually regular)
periods of decreasing use

– General trend over long
periods of time is always up

– Typical of slow memory
leaks

– Very difficult to describe
mathematically!

The Bumpy Ramp

0

1

2

C
PU

C

on
su

m
pt

io
n

The Saw Tooth

• Signature
– A series of resetting ramps

• Only the ramp trigger
gets reset to zero
periodically

– Commonly seen in:
• Monitors reading daily

logs
• Disks that fill and are

cleaned up

The Saw Tooth

0

1

2

C
PU

C

on
su

m
pt

io
n

Session Bonus: The Single Threaded
Multi-process Application Loop

• Signature
– A stuck query in software

(often java) that calls
middleware and then a
database as fast as it can

– Single threaded application
using multiple processes

– Seldom eats an entire CPU
because of inter process
communication delays

– Usually run until killed

Single Threaded
Multi-process

Application Loop

0

0.5

1

1.5

2

2.5

3

In
st

al
le

d
C

PU

Session Bonus: The Multi-threaded
Single Process Application Loop

• A workload with a dual threaded looping process!

Session Bonus: The Constrained Single
Process Application Loop
With Real Work Present

• A workload with a single looping process on a single
processor machine with significant real work present

– My current loop robots don’t see it if total other work keeps it
below thresholds

• If ((pcpu <=mlow) it is invisible!
• My saturation robot sees it, but those warnings often are ignored due

to high “who cares?” hits.

And Many More…

• This is not an exhaustive list
– The panoply of bad coding techniques…

• Any process that requires repeated human
intervention to detect and correct might be a
workload or process pathology that we can
automatically find

• But, these are plenty to get started with!

The Challenge

• Devise simple algorithms that efficiently
detect process pathologies from data
sources and publish your algorithms!
– You don’t have to be perfect!

• Absolute perfection is very difficult
• If your method is easy and finds a large percentage

without false positives, it is a great method!
– Start with simple issues, the complex ones will

still be there waiting for you later

Rules of the Chase

• Ideally the solutions would:
– Follow a “single data collect, multiple use” doctrine
– Collect process data

• Turn on accounting if needed
– Embrace simplicity
– Find a large percentage of the problems
– Provide most, if not all, information needed to address

the pathology at the time of notification
– Embrace parameter files to minimize the need to

change code; which is error prone and tedious

Rules of the Chase

• Ideally the solutions would:
– Embrace fuzzy logic, if needed. Example: If a process

meets 3 of 5 criteria, it might be a pathology
– Use tools that are commonly available, the cheaper the

better
• Perl rules!
• Spreadsheets are ubiquitous, but macros can be tough to keep

running long term

– Combine notifications into a minimal set of messages
• Limit numbers of email notifications

Rules of the Chase

• Ideally the solutions would:
– Consider a FYEO (For Your Eyes Only) class…

• Don’t write tickets for yourself!

– Run private (FYEO) for a while before going public
• Nothing is worse than false positives!
• Build guru status by mysteriously finding all this weird stuff that

everyone else misses!

Rules of the Chase

• Ideally the solutions would:
– Follow Denny’s Law

• Never alert on something that you can’t explain to someone
paged at 3:00 AM!

– Follow Ron’s Law
• Never add over a thousand nodes to your automated check

system on a Friday afternoon or before you take a vacation!

Criteria For Success

• It is not a “who’s method is better” argument. If
your method works at all in your situation, it is a
great method!

• Strive for low, or no, false positives
• Seek

– Simplicity
– Low resource consumption
– Elegance

Criteria For Success

• Always code for exceptions! Always!
– Notification fatigue due to repeated false positives will

kill your effectiveness!
• Write for the whole world

– comment your code!
• You don’t have to be perfect!

– You just have to try!

What We Do

• At Safeway Inc., we run automatic process pathology
detection tests on nearly 2000 AIX, LINUX, Solaris and
various flavors of Windows distributed systems nodes
each day
– It is not uncommon to find 8-12 pathologies every day, and

sometimes many more!
– Since we started noticing and alerting automatically, our requests

for in-depth performance investigations have dropped off
dramatically

– It is nice to spot a problem (and ideally fix it) before the users even
notice it!

What We Did
• Start a new test on a subset of nodes, and widen it out

when it is proven
• Run FYEO for a while

– do the pre-training
– warn the support staff about what is coming

• Expect to spend significant phone time explaining why the
programmer/vendor on the other end of the line should
care about the problem
– Graphic evidence accompanying your calm, yet firm, explanations

is indispensable, so get good at generating graphs quickly
– Have a way to send proof graphics outside the firewall if you

discover issues in third party software

What We Did
• People hate tickets

– If you generate a stream of them, they won’t be too fond of you
either

– Win them over with patience, good humor and graphs

• Work the management chain from the top down
– Make sure they see the value

• Increased productivity
• Root causes of performance issues found
• Decreased panic induced problems
• We’ll detect and fix it before it gets really bad

– Make sure that their people know that they support it

How To Detect The Simple Loop

• Theory: A process that uses an entire CPU
for an extended period of time is often not
desirable. Detect and report loops that exist
for extended periods of time

• Practice: The real world is less pure. The
simple loop is a great place to start,
because there are so many of them

How To Detect The Simple Loop
• Parameters we use:

– Function (process_loop)
– Operating System (AIX, HPUX, Linux, Solaris,

WindowsNT, Windows2000, Windows2003,
etc.)

– Allowed Deviation%
– Loop Mean

• Example: 0.05 Allowed Deviation with 1.00 Loop
Mean finds any process whose CPU consumption
was between 95% and 105% of an entire processor

How To Detect The Simple Loop

• Why a lower and an upper limit?
– The lower says “at least this busy”
– The higher says, “no busier than”, and helps

weed out busy multi-threaded processes like
sqlservr

• Greater than 1 CPU?
– It happens. Remember, when sampling

computers, there is always sample error, and
sometimes there can be more CPU attributed to
a process than there were seconds available

How To Detect The Simple Loop
• Parameters we use:

– Calculation method (span i.e. it must loop for a
span of time)

– Hours per day to qualify (i.e. the process must
loop for at least 8 hours in 24 to trigger)

– Output choice
• mail
• trouble ticket system or file
• node history file
• others

How To Detect The Simple Loop
• Parameters we use:

– Loop File name (if written to a file) or whatever method
you use to interface with your trouble ticketing system

– Mail Recipients
• You will change this a lot
• Your time savings due to this one alone is worth adding a

parameter system

How To Detect The Simple Loop

• Given:
– dos = allowed deviation for

that operating system
– loopthreshold = number of

hours in your review period
required to qualify as a loop
(we use 8)

– mos = loop mean for that
operating system

– mlow = mos – dos

– mhigh = mos + dos

– pcpu = CPU consumed by a
unique process

– pn
cpu = CPU consumed by a

unique process n
– phours = number of hours in

your review period that pcpu

looped
– pexception_hours = the additional

hours needed for a pcpu on the
exception list to qualify as a
loop. Note:

• when loopthreshold +
pexception_hours >= total
periods, this process will
never trigger a loop!

How To Detect The Simple Loop
If (pn

cpu >= 10% of a CPU on that machine)) {
 If ((the machine is not saturated) {
 For each pcpu {
 phours = 0
 For each hour {
 If ((pcpu >=mlow) and (pcpu <= mhigh))
 then {phours = phours + 1}
 If (pcpu‘s process name is on that operating system’s
 exception list) then
 {loopthreshold = loopthreshold + pexception_hours}
 else {loopthreshold = normal loopthreshold}
 if (phours >= loopthreshold) then {pn

cpu’s a loop!}
} } } }

Simple Loop Exceptions
• Simple Loop Exceptions are easy!

– Just add hours
• Example: If a normal loop triggers at 8 hours in 24, this one

has to loop for 8 more (16 total) before it triggers
• What happens if you add 24, or any number higher than (24-

(hours-per-day-to-qualify))?
– The process never triggers

– Sometimes you will get applications that look like loops for slightly
greater than your threshold

• In-memory “cube” databases
• Make it more difficult, but not impossible to trigger

– They have runaway queries too!
– Sometimes code owners deny reality…

• Revisit your exceptions from time to time

Simple Loop Parameters

• process_loop,Linux,.05,1,span,8,
summary_mail node_history trouble_ticket,
/a_directory/ticket_logs/loops,
ronmail\@the_firm.com linux_dudemail\@the_firm.com

• process_loop,Windows2000,.08,0.92,span,8,
summary_mail node_history trouble_ticket,
/a_directory/ticket_logs/loops, ronmail\@your_firm.com
dennymail\@your_firm.com

Simple Loop Exception Parameters

• process_loop_exception,AIX,DISGUISED_NAME,8
– DISGUISED_NAME must look like a loop for 8 regular plus 8 more

= 16 hours out of 24 to trigger a warning
• process_loop_exception,WindowsNT,sqlservr,12

– sqlservr must look like a loop for 8 regular plus 12 more = 20
hours out of 24 to trigger a warning

• process_loop_exception,Windows2000,sqlservr,12
– sqlservr must look like a loop for 8 regular plus 12 more = 20

hours out of 24 to trigger a warning

• This looks pretty simple so far, doesn’t it?
– The payback from finding simple loops is huge!

How To Detect
The Constrained Loop

• Theory: A process that would use an entire CPU
for an extended period of time (if it were not
prevented from doing it by competition) is often
not desirable. This competition originates from
both real work and often other constrained loops.
Detect and report loops that exist for extended
periods of time

• Practice: There are at least two types of
Constrained Loops with very different properties!
There are different ways to check for each type

How To Detect the Constrained
Loop When Real Work Is Present

• Kibitzing: Why doesn’t the Simple Loop checker
find them? Why not lower the mean and widen
the spread
– Answer: There are infinite special cases that wreak

havoc on any attempt to find Constrained Loops with
large spans around a mean, and the number of false
positives will be substantial

How To Detect the Constrained
Loop When Real Work Is Present

• We tried and failed a lot!
• The effective way turned out to be simple

– If the machine’s CPU is saturated
• Check correlations of significant consumers
• Significant consumers with a high positive correlations (0.66 or

better) are usually constrained loops
– 0.66 is pretty conservative, most correlations are in the

high 0.9s
– We may raise it to the 0.9 to weed out a few innocent

database processes that get tagged when huge numbers
of constrained loops are present

How To Detect the Constrained
Loop When Real Work Is Present

• When significant consumers have a high negative correlation…
– one of them is real work
– one is probably a constrained loop
– That pair does not qualify in this round

• If one really is a loop it will probably qualify in another process
pair

– What is a significant consumer?
• We use (minimum consumption to qualify = 10%) just to

dramatically reduce the number of correlation calculations
• Note that this also finds CPU constrained processes

– Not what we intended, but we’ll take it!

How To Detect the Constrained
Loop When Real Work Is Present

• Given:
– σpncpu= standard deviation of

CPU consumed by a unique
process n during the hours
where both processes
existed

• Remember you must re-
compute µ1

cpu, µ2
cpu, σp1cpu and

σp2cpu each time for each pair,
including only the hours where
both members of the pair
qualified as loops

If ((pn
cpu >= 10% of a CPU on that

machine) and (the machine is
saturated)) then {
pn

cpu is put on the review
list for that hour}

 COV (p1
cpu, p2

cpu)
C(p1

cpu, p2
cpu) = ---------------------

 σp1cpu σp2cpu

If (C(p1
cpu, p2

cpu) is >= 0.66) then
{it’s a constrained loop!}

How To Detect the Constrained Loop
When No Real Work Is Present

• The good news
– These don’t really matter, do they?

• The bad news
– They might get in the way of something that does, some day in the

future
– Correlation coefficients DO NOT WORK when you search for

these
– I want to find all Constrained Loops!

• How do we notice them?
– If two significant processes total consumption lies within a band of

two standard deviations of another process’s consumption for
enough hours in a day, it usually is a Constrained Loop When No
Real Work Is Present

How To Detect the Constrained Loop
When No Real Work Is Present

• Given:
– µn

cpu = computed mean of
the CPU consumed by a
unique process n during the
hours where both processes
existed

• Remember you must re-
compute µ1

cpu, µ2
cpu, σp1cpu and

σp2cpu each time for each pair,
including only the hours where
both members of the pair
qualified as loops

If (p1
cpu >= (µ2

cpu - 2σp2cpu) and
 (p1

cpu <= (µ2
cpu + 2σp2cpu) then

{you probably have a suspect}

0

10

20

30

40

50

C
PU

 C
on

su
m

pt
io

n

Loop Wrap Up

• Loops are by far the most common process or
workload pathology

• Loops are easy to find automatically!
– Check the paper for the gritty details, known issues and

formulas
• Automatically finding and ticketing loops on all

your system will probably cut your performance
investigation requests by 2/3rds!
– You can use all that free time to write CMG papers on

how you did it!

Finding Ramps
• We have not yet found a killer ramp finder method that

works with no human involvement
– We do have a sneaky way to detect CPU ramps that works if you

give it a clue
• Clue: This workload should never exceed X% when working

properly
• Ramps matter when they get big
• You will trigger when they get X% big

– If (pcpu >= threshold) {…notify someone!}
• If the same application sends tickets on 100 nodes a day,

someone might fix it!
– If CPU Ramps run long enough, they become loops!

Finding Bumpy Ramps

• I am convinced that there is a way to automatically find
Bumpy Ramps, and we need it bad
– Most real ramps are bumpy ramps

• The periods of negative slope tend to foil most math we’ve
tried

– Memory leaks are everywhere
• A memory leak in java is defined as leaks that leak faster than

java’s built in garbage collection can de-allocate memory

• Maybe you will find the killer formula!
– Until you do, (and publish) try workload thresholds

Real World Ramp Examples

• From Wednesday of this week:
– An AIX Memory Leak
– A CPU Ramp
– A Nightmare Node
– sliudv25 process memory plateau issue

• If you are not looking, you won’t see them, but
you will have them

• java is often another word for “memory leak”
• So is …

Join The Hunt!
• There are plenty of pathologies out there just

waiting for our attention
– Bumpy Ramps
– The Single Threaded Multi-process Application Loop
– The Multi-Threaded Single Process Application Loop
– Deadly embrace lock detectors
– And many more…

Join The Hunt!
• Publish your algorithms!

– I’ll help test them
– I’ll coauthor a paper with you

• If we are lucky, this will turn into a panel!

• Note to vendors
– Please put this functionality in your products!

Questions?

ron.kaminski@safeway.com
for paper pdf files, example code,

example web reports, etc.

	Automating Process and Workload Pathology Detection
	Introduction
	Ron Kaminski
	Ron’s Problem
	Ron’s Solution
	Ron’s Solution
	The Problem Is Massive
	What Is a Process orWorkload Pathology?
	What Is a Process orWorkload Pathology?
	Pathology Hunting Prerequisites
	Pathology Hunting Prerequisites
	Typical Pathology Example
	Typical Pathology Example
	Typical Pathology Example
	Typical Pathology Signatures
	Typical Pathology Signatures
	The Simple Loop
	The Hum
	Multiple Constrained LoopsWith Real Work Present
	The Constrained LoopWith No Real Work Present
	The Simple Ramp
	The Bumpy Ramp
	The Saw Tooth
	Session Bonus: The Single Threaded Multi-process Application Loop
	Session Bonus: The Multi-threaded Single Process Application Loop
	Session Bonus: The Constrained Single Process Application LoopWith Real Work Present
	And Many More…
	The Challenge
	Rules of the Chase
	Rules of the Chase
	Rules of the Chase
	Rules of the Chase
	Criteria For Success
	Criteria For Success
	What We Do
	What We Did
	What We Did
	How To Detect The Simple Loop
	How To Detect The Simple Loop
	How To Detect The Simple Loop
	How To Detect The Simple Loop
	How To Detect The Simple Loop
	How To Detect The Simple Loop
	How To Detect The Simple Loop
	Simple Loop Exceptions
	Simple Loop Parameters
	Simple Loop Exception Parameters
	How To DetectThe Constrained Loop
	How To Detect the Constrained Loop When Real Work Is Present
	How To Detect the Constrained Loop When Real Work Is Present
	How To Detect the Constrained Loop When Real Work Is Present
	How To Detect the Constrained Loop When Real Work Is Present
	How To Detect the Constrained Loop When No Real Work Is Present
	How To Detect the Constrained Loop When No Real Work Is Present
	Loop Wrap Up
	Finding Ramps
	Finding Bumpy Ramps
	Real World Ramp Examples
	Join The Hunt!
	Join The Hunt!
	Questions?

