
Time Stable Workload Characterization Techniques

Ronald R. Kaminski
Safeway Inc.

Workload characterization is the process of organizing computer process resource consumption into
groups that aid resource utilization analysis. Great workloads allow the trained analyst to quickly solve
performance, growth and sizing questions with precision. However, producing proper
characterizations can take a lot of time, especially if they must be built from scratch at the start of
each question. The key to a speedy response is pre-work, but how can you do this when you have yet
to see the business or technical questions? This session will cover techniques used by experienced
analysts to produce general-purpose workloads that have been repeatedly shown to be useful in
answering common questions. This paper will also cover workload consumption pattern theory and
ways to tune your workloads to increase both forecast precision and audience comprehension. We
end with an open wish list to software vendors; in hope that they will provide the additional functions
we need to take greater advantage of workloads characterizations.

1 Introduction – Politics Versus Science

The vast majority of IS decisions made are the
result of internal political pressures. Often
decisions stem more from ego and
organizational maneuvering for future plum
positions than from a solid basis in scientifically
analyzed data. The same basic human need for
status that causes midlife crisis sports car
purchases can drive management to buy the
most powerful machines that they can, and lots
of them. There are also economic pressures;
many firms base executive pay on span of
control and budget size, so there are often
financial pressures to spend heavily, and
hardware and software vendors are happy to
oblige. We also see extreme risk aversion in IS
management, so a manager who bought the
biggest machine available can’t be blamed when
the developer’s software doesn’t fit on it.

The average non-managerial computer
professional has spent a significant portion of
their life interacting primarily with machines.
Machines are not big sticklers for political
correctness, so the computer professional gets
little feedback on effective political maneuvers.
Thus, they blithely answer only the questions
presented by the “schemers,” and are often
frustrated when this information is used to justify
purchases that they feel are ridiculous.

This purchase pattern is unfortunate during
boom times when firms can afford mistakes, but
can be fatal during lean times. At some point this
pattern may lead shareholders to question if
management is in breach of their fiduciary
responsibilities to the owners. What can we

computer professionals do to break this cycle?
How can we help our firms make better
decisions?

We need to provide better information in more
effective ways, and often more information than
they ask for. Good business workload
characterization is critical to making the right
decisions. Workload characterized views of
consumption are present in almost every well
run IS shop. Let’s look at an example of why.

Suppose a development group sends the IS
purchasing department a request for a gigantic
production UNIX server and hundreds of PC
upgrades for the clients to support their
warehouse system deployment. They offer these
classic CPU graphs (Figure 1) of their
benchmark week on their prototype client
workstation and UNIX development servers in
support of their request:

Figure 1, Compelling Need For Upgrades

Four CPU UNIX Server

0
25
50
75

100

Time

C
P

U
 %

U

sa
g

e

1.3 GHz Warehouse PC

0
25
50
75

100

Time

C
P

U
 %

U

sa
g

e

Imagine how different a response they would get
if they offered workload characterized views
instead. (Note: Work related to warehouse
activities is black and on top.)

Four CPU UNIX Server

0

25

50

75

100

Time

C
P

U
 %

U
sa

g
e

Runaw ay Loop Excessive Monitoring

UNIX Tools

Backups Another Project

Warehouse java Warehouse database

Figure 2, Not So Compelling Now!

Both Figure 1 and Figure 2 tell the decision
makers how much CPU was used on the
warehouse development servers, but Figure 2
might lead to better business decisions.

Is this example realistic? An experienced
performance analyst will likely confirm that
clients often have bloated monitors, projects on
machines they didn’t know about, developers
running things that they shouldn’t and an awful
lot of surplus processing present on a machine
that was supposed to be dedicated to only
certain functions. Add in a few process
pathologies (loops, etc.) and just finding the real
work becomes a hunt.

Without a workload characterized view of
consumption, should you really trust benchmark
results that only show total consumption?

2 Getting Started - What Is A Workload?

A workload is just a grouping of resource
consumers. A workload can have zero, one or

many processes and these processes are
selected by criteria such as process name,
directory location, owner username, or any other
differentiator that you can reasonably imagine.
Workloads are constructed for a variety of
reasons, some better than others, which we will
cover in detail later. Generally, a workload is
used to summarize the consumption of its
members in each period for reporting, or in more
advanced tools, for “what-if” modeling.

2.1 Workloads That Don’t Work!

The availability of a tool to help with the physical
process of creating workload-characterized data
does not guarantee success. There is often
considerable judgment involved, and these
judgments are tough for the uninitiated. While
the rest of this paper will help you up the
workload characterization learning curve, let’s
take a moment and look at some undesirable
detours.

When people first discover workload
characterization, they generally split into two
camps.

One group dives into workload characterization
with missionary zeal. They craft incredibly
complex criteria and hundreds of workloads, and
the capacity planning and charting machines
groan with effort. The other group creates just a
few workloads like UNIX, database and users,
and produces charts more quickly. Both groups
have decisions to make as the workloads
evolve, when people add products, functions or
new development.

2.1.1 Too Many Workloads!

Our zealot group invests heavily in creating
workloads, at least at first. Each node is judged
“unique”. They fret when any processing slips
through as uncharacterized, and become
distressed when intricate relationships they
defined a month ago are trashed when
developers change process names, or directory
names change with an upgrade, or any time
entropy raises its powerful claw.

Zealots are also prone to “special case mania”,
in which the same process can end up in
different workloads on different machines. This
lack of consistency can lead to their audience’s
confusion and exasperation.

While you can surely see a lot of information on
their graphs (if you happen to carry a magnifying
glass), the effort to produce and interpret these
intricate graphs on an ongoing basis is extreme.

1.3GHz Warehouse PC

0

25

50

75

100

Time

C
P

U
 %

U

sa
g

e

Operating System Backup & Restore
Screen Saver Defragger
Music Dow nloads Streaming Radio
Diablo Web Surfing
Virus Scanner E-Mail
Warehouse

The zealots risk burnout, and rapidly push
commercial products to the edge.

2.1.2 Too Few Workloads!

The simplistic workload characterizer creates
extremely broad workloads, often based solely
on username. While it is a step above a simple
CPU graph, it is really hard to diagnose whether
user Bob is doing real work, has problem
processes or anything of much use. The
minimalists get little from their efforts, and may
soon tire of all the effort they expend for so little
gain.

Imagine a database machine with a workload
called “database” and another called “other.” It
isn’t much better than a total CPU graph, is it?
Perhaps the database should be subdivided into
different instances, functions or some other way
that is useful to analyze business problems.

2.2 Workloads That Do Work

The advanced workload characterizer uses
consistent criteria to strike a balance between
the two camps. Intricacy is used only when
needed, and broad, “sweeper workloads” are
defined to minimize the clutter. They also have a
stronger weapon - consistency - that makes it
easier on them and on the decision makers
using their output. Let’s explore some of their
methods.

2.2.1 Beginning Hints

We will describe many good reasons to create
specific workloads, but keep these general ideas
in mind:

• Use “business based” workload names.
If the database is used for warehouse
functions, call the workload warehouse,
not database.

• Use normal language and short names.
Delving into intricate technical
descriptions or complex math just
makes people uncomfortable. If you
have to explain it each time to the
viewer, pick a better name

• Avoid defining “nit” workloads. Sure,
you’ve tracked that weird process down
and now know exactly what it is. Set a
threshold (we use 2.0% - 0.5%), and
determine that anything smaller is a nit
that doesn’t deserve a unique workload.

• Consider your audience and vary your
workload characterizations accordingly.
It is acceptable to have one set of basic

workloads for graphs that you show
everybody and an intricate and complex
one that you personally use for analysis
or modeling.

• Anticipate the next question and
answer it before being asked. Time can
be wasted if a killer question is lobbed
in and you are not prepared; impatient
management might run off and buy
something. If you are going to shoot
down someone’s hypothesis that lack of
CPU was the cause of a problem, you’d
better find out what really caused the
problem before the meeting.

• Cultural differences are real and might
affect your workload choices. In some
cultures, a username-based workload
may be interpreted to cause someone
to “lose face”. [Foxon 2002] Since our
goal is to reduce political problems, not
to cause more, consider your choices
carefully based on your audience. Any
workloads are better than none.

• Be consistent! Always use the same
groupings on all similar nodes.

• Use precedence order to decide where
to put a process that meets the criteria
to be in several different workloads.
Rank your workloads from the precise
down to the general.

2.2.2 The Heavy Hitters

In every firm, there are usually a few well-known
monster applications that receive the lion’s
share of the attention. As a new capacity
planner, you will often see these on the top of
your “to-do” list. Major databases, payroll
applications, integrated accounting automation
and customer analysis packages are examples.
If the vice president’s phone rings when there is
a problem, it probably belongs on this list.

The heavy hitters are where you should lean a
little in the zealot direction. Often, the effort
required to subdivide and allocate the large
consumer’s consumption will yield the answers
to long-standing unsolved problems.

Maybe it would help to see if backups are
running in off hours or during the peak? Are
there any “well intentioned” but now bloated
“home-grown” monitors present, and is their
output worth the cost? Any experienced analyst
could fill pages with war story examples on this
topic. There are often millions of dollars of
savings here, so invest the time.

2.2.3 But it is just one or a few processes!

Often your heavy hitters have extremely varied
or complex functions contained in a very small
number of processes and it is difficult to break
out consumption reasons; all are
indistinguishable from the operating system’s
point of view. Databases, products like Oracle
Financials, SAP and many others make internal
metrics available in various forms. The best of
these tell you exactly what resources were
consumed by function; the least useful tell you
function counts and leave you to come up with
an allocation scheme. Sadly, vendors that do not
provide consumption metrics because collecting
them “would impact performance”, are often the
ones with performance problems.

If you have delved deeply into product manuals,
called support and still can’t find documentation
on the resource cost of a transaction, there are a
few tricks to help you figure it out. Perhaps you
can find periods where only one type of
transaction is present. Divide workload
consumption by the transactions completed in
that period. I have had success getting the
accounting folks to hold all but one type of job
for an hour to find these. Often they are really
motivated to help, as they are the ones impacted
by poor performance during peak periods.

A complex method called factor analysis can
sometimes help. Consult a good textbook or do
a Google search on “factor analysis” for the
gritty details which are beyond the scope of this
paper. Basically, factor analysis is the use of
mathematical tools that compare resource
consumption totals and transaction counts in a
series of periods and yield predicted atomic
consumption by transaction, with appropriate
statistical measures of probability. Software or
hardware changes within your analysis period
can torpedo your accuracy, so remember not to
include these “point source interrupters” in your
analysis periods!

Continue with a process of elimination to further
subdivide. Remember that your results can shift
dramatically when DBAs re-spread tables
(usually after you shoot down a machine
purchase by pointing out that all the
performance problems are due to overloading
too few spindles.) Be prepared to re-analyze
after upgrades, as time passes, or any time an
important decision rides on your output. Often,
the usefulness of historical data fades quickly
due to the constant stream of small changes in
major systems. Focus on recent data. The good
new is that you may not need to keep years of
consumption data!

In the end, allocation often involves a blend of
artistic discretion and science. Lean towards the
science.

2.2.4 The Usual Suspects

We’ve all seen movies where the detective
faced with a petty crime rounds up the local
miscreants for a lineup. After you spend time in
your firm’s environment, you will find that there
are certain processes or packages that show up
on many servers, and a problem with
configuration or a new version on one machine
quickly spreads to many. After finding the same
problem on many nodes, you will develop a wary
eye when these shuffle into view.

While these may be nits when functioning
properly, if they have a habit of misbehaving,
they are worth being defined as a workload. We
use a Tools workload, where we put things like
collectors, monitors, defragmenters, virus
scanners, security scanners, and any others that
have proven prone to wild consumption spurts.
That way, whenever the Tools workload gets
big, we know that one of the usual suspects, not
business processing, is the reason.

Note, sometimes a usual suspect returns to the
path of the straight and narrow. When this
happens for a quarter, eliminate the workload.

2.2.5 The Joys and Perils of Sweepers

Now you have characterized your heavy hitters,
your usual suspects, and most remaining
functions. However, there is still that little fuzz of
small consumers that aren’t in a distinct
workload. How do we clean up all that mess?
You make sweepers!

A sweeper is often a username-based workload
that is far down in the precedence order. On
Windows machines the “Administrator” user’s
processes, and on UNIX machines the “root”
process are often used as sweepers. Each
operating system has a host of intricate
processes that do very basic functions and are
always around. Sure, you could enumerate a list
and call them “OS Background”, “NT” or “UNIX”,
but every time there is an upgrade, you will have
to fix all those workloads. Yuck!

If you are lucky and your firm has username
naming conventions that let you divide users into
useful piles like “employees”, “consultants”,
“product administration” etc., you can sweep up
a lot of flotsam with relatively few workloads.
This sounds great so far, doesn’t it?

The risk here is that innovation creeps in and
suddenly you have a giant sweeper workload. It
may be great that the “employee” workload is
busy, but what are they doing? Here again, a
threshold helps your decision. In general, any
time a sweeper rises above 5%, we review it to
see if a significant subdivision is possible.

2.2.6 “Who Did It?” Versus “What Did it?

While consulting, you may find shops where
there is a rush to blame individuals instead of
understanding the technical issue. In general,
“What Did It?” is ultimately more interesting, as it
leads to calculating the economic business
value of a given activity. Keep the username
“sweepers” small and you avoid this problem.

2.2.7 But I Want to Change a Workload!

If you are new to the workload characterization
game, you will be learning a lot. The goal is not
to produce a rigidly defined set of workloads the
first day. As your business and technical
knowledge grows, you will improve your
workloads. If the changes are major, remember
to spend time with your key audience members
prior to large meetings where they might have to
interpret your new work. Your first job should
always be to make your boss look good in a way
that helps the firm.

2.2.8 Why Is “Time Stability” Important?

Time Stability is a measure of the resilience of
your workloads in the face of changes.

Workloads that remain consistent over long
periods reduce the burden on your audience.
Corporate decision makers are extremely busy.
If they already figured out what the “Tools”
workload was last quarter, and they see it again,
they can make decisions quickly. If every view
that they get from your efforts is inconsistent,
you will limit your communication effectiveness.

Also, your time is a scarce resource. If you have
to constantly fiddle with your workloads, you limit
the number of nodes that you can service, and
you reduce the time you can spend on valuable
analysis.

Using “Time Stable” workload characterization
techniques, you can vastly increase the number
of systems that you can effectively analyze.
When workloads remain constant, you can more
easily develop tools and scripts that leverage
your efforts over more machines. This

consistency will also reduce the cycle time
between question asked and answer delivered.

3 Using Workloads For Analysis

So far we’ve only shown you how to use
workloads to create graphs, but there are a lot of
other reasons to have them. First, we’ll cover
workload consumption theory, or what the graph
tells you about how a workload consumes
resources. We’ll decide on what is normal. We
may even find a problem or two. Then we’ll
show examples of how to use the consumption
patterns for more accurate estimates and
models.

3.1 What Business Workloads Look Like

You will graph your firm’s workload
consumption, and patterns will quickly emerge.
Depending on the lines of business served by
the machine you are studying, when you graph
based on time you may see the classic two-
humped “camel” of a single time zone “office
hours” system, or if you serve internet, retail
shopping or any other workload that is primarily
serving people who are not at work, you will see
peaks after normal working hours. Trading firms
have their own unique pattern with peaks near
market open and close, and industrial sites will
have patterns based on shift changes. However,
there are many ways to look at workload
consumption. Let’s explore a few.

3.1.1 Graphing Based On Time

The most common way people view workload
resource consumption is against time.

Figure 3, A Week On The Warehouse System
Versus Time

Figure 3 is a week on a system supporting both
warehouse users and an office workload with
some nightly batch. Note the common pattern of
lower consumption on weekends, and how the
database workload swells when users add their

0

25

50

75

100

Time (Days)

C
P

U
 U

ti
liz

at
io

n

User Queries root_logins
Tools employee logins
Database nightly batch
middleware Backups

queries to the constant drone of warehouse
work. There are a few other interesting things
going on that we will discuss later.

3.1.2 Graphing Based On Business Metrics

A very interesting way to view your workload
consumption data is versus a business metric
instead of against time. In Figure 4, you can see
the warehouse system graphed not by time, but
by shipping transactions.

Here we can see several major workloads
(database and especially middleware) whose
resource consumption is directly related to
warehouse transactions. Some workloads, like
User Queries, seem to follow a different pattern,
probably something to do with when accountant
users are at work. We also see some workloads
that appear the same or static, no matter what
the transaction volume is, like Backups.

Figure 4, A Week On The Warehouse System
Versus Transactions

That database workload looks like a line with
junk piled on top, doesn’t it? You will often
encounter these fuzzy lines when you are
examining a workload with several independent
load sources. You can still see a slope, so we
know database load is driven at least in part by
warehouse volumes. This type of information will
be very useful if your firm has seasonal peaks.

When you graph workload consumption versus
business metrics, you will encounter three basic
patterns and their combinations.

 Figure 5, Linear Figure 6, Static

Figure 5 is the line you hope for, and you get it
when you discover a business metric that
corresponds linearly to consumption. You can
make great forecasts with these workload-
business metric pairs. Figure 6 is also common;
it is a workload that just hums along at its own
steady pace, no matter what the business
volumes are.

Figure 6 looks like our backup workload from
Figure 4. A lot of monitoring software and some
web infrastructure look like this. Again, you now
know that this workload never changes, so you
know not to grow it.

 Figure 7, None
Figure 8, Combination

From time to time you get Figure 7. While your
eyes will search valiantly, I can assure you that
the consumption bears no relationship to the
metric you chose for the bottom axis. In our
warehouse example, the main database load is
driven by warehouse transactions, but human
queries are driven by when an accountant hits a
key, so they appear random when graphed
against warehouse transactions.

Figure 8 is what you will normally see, which is
that most workloads have some static
component that raises their y-intercept above
the origin, and some linear component too. If
there is some other load present that is based
on a different business metric, you get a fuzzier
line. Notice how the combination line in Figure 8
resembles the database workload in Figure 4
that is serving both the accountants and the
warehouse folks? A trick for advanced users is
to color the dots where the accountants are busy
a different color, and you will often see the high
outliers pop into view.

0

10

20

30

40

50

0 100 200 300 400 500 600

Warehouse Transactions

C
P

U
 U

ti
liz

at
io

n

Database User Queries

root_logins Tools

employee logins Backups

nightly batch middlew are

3.2 Are My Business Metrics Any Good?

Often you will be forced to choose between
several different business metrics. You can
employ linear regression (if the data should be
linear) and check the R2 value, then, change
your workloads, eliminating points that are
oddballs or were collected during known periods
of resource shortage. There are several intricate
mathematical exercises that are described in
another paper [Ding, Kaminski, CMG2003] that
can help you decide.

Ultimately you will judge whether you have a line
or a random fuzz ball. If your otherwise
impressive linear line droops at high values, it is
often a clue that you are encountering a
resource or maybe a design constraint like
locking. The good news is that static workloads
will always look the same, even if your business
metric is lousy!

3.3 Extra For Accurate Modelers

If your shop owns or has access to an advanced
queuing theory-based modeling package, you
can do great “What-if?” analyses of workload
growth, upgrade choices and a lot of really
precise work. To achieve ultimate precision,
make sure you understand how to deal with
workloads whose utilization includes a static
component.

Suppose we were going to hire 20% more
accountants and warehouse workers, and
expected resource consumption to rise
accordingly. The naïve modeler would raise the
appropriate workloads by 20% and see what
happens.

The more experienced modeler will remember
that all workloads are combinations of static,
linear and random components and adjust their
growth estimates according to how far these
characteristics raise the Y-intercept. Examine
Figure 9 for a graphic example.

In Figure 9, we see a workload with a significant
static component. Looking at the slope, you may
wonder why anyone would pick the naïve growth
estimate. But if you never graphed it, and just
took the highest use point (79.79) times one plus
the expected growth of 20% (1.2) you would get
the naïve point of 95.75! Yuck!

If instead you determined the Y-intercept (50)
and grew only the linear component of the
workload (79.79-50=29.79) by your intended
growth (1.2), you

Figure 9, The Naïve Growth Trap

would get the true estimate of 35.75. Remember
to add back your static component (50) to get
the Proper Growth Estimate point of 85.75. You
then divide the Proper Growth Estimate point by
the sample to get the proper percentage to grow
the workload. ((85.75/79.78)=1.075) That means
you only grow the sampled workload 7.5% for an
accurate 20% growth model!

People often make the naïve growth mistake
and it leads to inaccurate growth models and
over-buying. A great queuing-theory modeling
package will yield mathematically perfect yet
wrong model results if you feed it bad growth
estimates.

I had a great graduate school statistics professor
who always insisted that we graph all data and
results before and after our fancy formulas,
because the eye can detect silliness that
formulas hide. You should always graph yours
too.

3.4 Let’s Use Workload Characterization to
Solve A Problem!

The warehouse system we’ve been looking at
supports 24 by 7 warehouse shipping activities
as well as accountants working regular business
hours keeping track of it all. The accountants
complain that response time is awful on
Tuesday through Friday morning, but is okay the
rest of the time. When queried, they tell you that
Monday mornings are usually fine, and they
suspect that it has something to do with the fact
that the warehouse ships far less on the
weekends. Management is tired of the
complaints and is contemplating a new
$350,000 server offered as the answer to their
problems by a salivating hardware vendor.

To start, let’s examine a day when the
accountants are happy and a day when they are

84.58

78.82

94.58

0

25

50

75

100

Warehouse Transactions

C
P

U
 %

 U
ti

liz
at

io
n

Samples
Naïve 20% Growth Estimate
Proper Growth Estimate

Static Source Of Error

not, Monday and Tuesday. In Figure 10, you can
quickly see that during the first couple of normal
office hours on Tuesday, our machine is almost
saturated. Lets look at our workloads to see
why.

Notice how the backup and nightly batch finish
so quickly in the early hours of Monday,
because so few database changes happened on
Sunday, the “low volume” day before.

0

20

40

60

80

100

Monday Tuesday

C
P

U
 U

ti
liz

at
io

n

Tools root_logins employee logins

Database User Queries Backups

middlew are nightly batch

Figure 10, Monday and Tuesday CPU

Tuesday is a different story. A lot of transactions
occurred during office hours on Monday, so the
backups had lots of changed data to save, and
they ran longer. The nightly batch job also had
much more to do, summarizing yesterday’s work
for management reporting. Notice how it crawled
during backups, as the current machine’s
otherwise sufficient IO subsystem clogged with
all the data movement. In fact, the probable
cause of the accountant’s complaints is that the
nightly batch jobs ran two hours into their normal
working hours. If you squint really hard at Figure
3, you can see this pattern repeat on
Wednesday, Thursday and Friday too!

Note also the gap of low use every evening
before midnight. What if we moved backups into
that gap? The backups would run faster, as they
wouldn’t be slugging it out with the nightly batch
jobs for IO bandwidth. Similarly, the nightly
batch jobs would speed up, finishing well before
the accountants showed up. We don’t need to
buy a new machine; we just need to change the
start time of the backups!

I’ve encountered this very problem many times
over the years, which is why I almost always
have a Backup workload. (You can also quickly
check if any nodes aren’t being backed up, just
check if there is no Backup consumption for
extended periods!) This type of analysis can
only be done with workload characterized
consumption data.

By now, we hope you believe that you can’t live
without “workload characterized” views of
consumption. How many opportunities for
savings will you miss if all you see is total
consumption?

4 What to Look For In Vendor Workload
Characterization Products

While you can write your own workload
characterization programs (shudder), there are a
large and ever changing number of vendors
selling products aimed at the performance
market. While not all metrics lend themselves to
these groupings, those that do can be very
useful to you. Concentrate your attention on
vendor products that offer workload
characterized views of collected performance
information and provide tools that aid your
reporting, analysis and modeling. You might find
the following questions useful in your vendor
evaluations:

• Ask your vendor how you can subdivide
consumption. Favor vendors that can
characterized consumption:

o by username
o by process name
o by command line parameters
o by directory
o in AND combinations of the

above
o in OR combinations of the

above
Better vendors will have most of the list
mentioned. I don’t know of any who
have them all at press time, but I remain
ever hopeful!

• Ask to see examples of workload
characterized CPU consumption over
large spans of time.

• Make sure that workload
characterization is done after the data is
collected. Otherwise, you are stuck with
your first guess.

• On Unix systems, don’t be content to
see total consumption split up only as it
is in a “sar” output. I have yet to see
where %usr and %sys helped solve a
business issue.

Take advantage of the vendor’s strengths, but
don’t feel limited to their choices. Great analysis
often comes form a synthesis of the strengths of
a product and stuff you write yourself. Just
remember who has to maintain that mountain of
spaghetti code you write!

5 What We Wish Vendors Would Provide

Once you’ve used any vendor product for a
while, you will start wishing for things that make
your life easier. In many cases, you will tire of
waiting and program them yourself. Here is our
list of design ideas that make life easier for the
busy capacity analyst:

5.1 The Über Workload

There are times when a grainy set of workloads
really helps show what is going on. There are
also times when it is unneeded. It is very difficult
to predict in advance just how much detail that
your audience may desire. You can of course
create a huge number of small workloads, but
you may never guess in advance all the ones
needed, and your graphs will lean towards
zealotry.

We really wish that vendors would create
multiple levels of user definable “roll-up” or
“über” workloads, which are simply sums of
other workloads with user chosen names.

Imagine an “über” workload called Background,
which could be composed of sub-workloads like
Tools, sweepers like root_logins, printing, etc. If
it stays small, great, if it doesn’t, you can drill
down for more detail. Imagine a post-
consolidation machine with three distinct
business functions, you could have “über”
workloads for each major function, and then drill
in on the monster. With modern web and graphic
development tools, supporting “zoom-in”
functions like this within the graphics themselves
seems like a great idea.

5.2 This OR That

While some products have “transaction classes”
(which are groups of processes picked by name,
directory or command line parameters) that can
be combined with each other and username
based groupings to produce Boolean “AND”
(must have both) relationships, there are times
when a Boolean OR relationship (can be in any,
don’t have to be in all) would be really handy.

Imagine that you have a business function that
is the sole function of three clerks. Whatever
these three do, you want in that workload.
Further imagine that others in the company use
“process A” for that same purpose. What you
would desire in that case is a workload
composed of all use of “process A” by anybody
OR any use by the three business function
clerks. If you had an AND relationship, you

would only include “process A” when it was run
by the three clerks.

You can approach it with groupings of other
workloads, but it is messy. Maybe this is just a
special case of the “über” workload, but it would
still be handy nevertheless.

5.3 “Generate On Demand” Web Graphics

Many systems run a daily race to generate
thousands of graphs of yesterday’s workload
consumption between midnight and when the
staff appears in the morning. The chance of any
graph being viewed is often extremely small, so
much of that processing is wasted. We
consulted at one very large site that pumped out
28 graphs per node each day for 400 nodes for
a year, and only averaged two page hits per
month. What a waste!

With the plummeting cost of hardware, and the
increasing quality and sophistication of browser-
based tools, why not generate only the graphs
needed to support the pages people click to, on
an as needed basis? If you wanted to get really
fancy, pre-make and cache some graphs of
nodes on a “hot-list” or that have triggered a
process pathology warning.

5.4 Workloads That Apply To All Nodes

If you work with these products for any length of
time, you will reuse workloads. For consistency’s
sake, this is a good thing. The trouble is, over
time, workloads change. Depending on how you
manage your workloads, these small changes
can be very difficult to deploy to all your
characterization control files. If you are doing it
by hand, you are guaranteed to deploy it
inconsistently, despite your most earnest efforts.

To solve this problem, vendors need to start to
think of characterization as an enterprise-wide
activity, or at least an operating system wide
effort, not as a single node enterprise. For
example, once you determine what a process is
on a given operating system, you are likely to
want it on all nodes that use that operating
system. Vendors need to either 1) add functions
that detect when certain workload signatures are
present and dynamically apply approved
workload characterizations or 2) take advantage
of the extremely powerful machines now
available and apply all workloads to all nodes.

Without a designed-in method, you will end up
with intricate workload characterizations with
different precedence orders, different workload
constituents or perhaps even missing workloads.

These inconsistencies are unfortunate,
confusing and limit your effectiveness.

5.5 Workload Color Consistency

Suppose you have worked really hard and
maintained consistent workloads across
hundreds of nodes. Common programming
etiquette is to assign colors randomly to
workloads, as long as the colors are unique on a
single graph. The same workload on different
nodes may be green, red or blue. We have seen
repeated instances of confused audiences trying
to understand how the red workload on this
node is the puce workload on that node.
Maintaining consistency by hand is an exercise
in frustration, and definitely not scalable.

If workloads were created for an enterprise-wide
deployment, you could assign a color at
creation, and then puce would always be the
same workload. We can hear the users cheering
already.

We sincerely believe that sticking to so-called
“web-safe” pallets that limit you to a subset of
256 colors is no longer realistic. The 1990s were
nice, but the technical limitations of that age
should no longer restrict the capabilities of this
one. The power of complete information is worth
upgrading a browser or workstation that is older
than 95 percent of the “dot-coms” still around.
We look forward to a vendor deciding to create
the competitive advantage that unique colors will
bring to reporting and analysis.

5.6 Make It Easier

Many people feel that the amount of work
required to make workloads is withering. The
complexities of precedence order effects (how
did that process get in that workload?), the
hassles of maintaining consistency, and the
repeated instances of analysts in each firm
starting from ground zero to find, define and put
the exact same processes the exact same
workloads is needlessly labor intense.

There are many ways to ease this burden. We
hope vendors consider providing libraries of
documented shared workloads common to
certain operating systems and major commercial

applications. If business metrics were available,
wouldn’t it be nice if the vendors calculated
workload static components and proper growth
estimates for us too? Graphic representation of
growth choices in the modeling interfaces, and
additional workload quality analysis tools would
also help.

6 Summary

Workload characterizations are incredibly
powerful ways to increase the information quality
available to decision makers. Whether you use a
commercial product, or you program a solution
yourself, you owe it to your audience to provide
the power of significant, consistent, and
business relevant characterized consumption
views.

We look forward to large-scale innovation and
improvements in workload characterization and
reporting technologies in this decade.

7 References

[Foxon 2002] Tim Foxon, Metron Athene class,
08/07/2002, Walnut Creek CA

[Ding, Kaminski, CMG2003] Yiping Ding and
Ron Kaminski, “Business Metrics and Capacity
Planning” CMG 2003 proceedings.

A special thank-you to Denise Kalm, the best
CMG paper mentor and editor you could hope
for. This paper is 200% better due to her efforts.

8 Legalese

Any process names, product names, trademarks
or commercial products mentioned are the
property of their respective owners.

All opinions expressed are those of the author,
not Safeway Inc.

Any ideas from this paper implemented by the
reader are done at their own risk. The author
and/or Safeway Inc. assumes no liability or risk
arising from activities suggested in this paper.

Work safe, and have a good time!

