
APPLICATION DELIVERY

MERCURY LOADRUNNER

BEST PRACTICES GUIDE FOR R/3

Introduction……………………………………………………………………………2

Best Practices Process………………………………………………………………3

Preparation ………………………………………………………………………4

Development ……………………………………………………………………9

Execution/Analysis ……………………………………………………………10

Results Summary ………………………………………………………………12

Abbreviated Best Practices Process ……………………………………………12

Preparation………………………………………………………………………12

Script Development ……………………………………………………………13

Execution/Analysis ……………………………………………………………14

Results Summary ………………………………………………………………14

Common Implementation Issues …………………………………………………14

Preparation………………………………………………………………………14

Script Creation …………………………………………………………………16

Execution/Analysis ……………………………………………………………17

Summary ……………………………………………………………………………18

TABLE OF CONTENTS

INTRODUCTION

The Mercury LoadRunner® Best Practices Guide describes Mercury’s

recommended LoadRunner implementation methodology and typical

issues encountered in an R/3 implementation.

An R/3 system incorporates a number of moving pieces — enterprise

network, client machines, application servers, Web servers, database

servers, etc. Most if not all large-scale SAP implementations suffer from

performance-related problems. These problems range from poor online

transaction process response times to inadequate batch throughput.

Problems may arise for any number of implementation issues, such as

inaccurate volume/sizing estimates, undefined operational profiles, poorly

written client development code, un-tuned database, hardware

configuration, or an un-tuned operating system.

The goal of a comprehensive load test is to proactively diagnose and

eliminate these performance problems. This is accomplished by running

model loads in a test environment, identifying system bottlenecks, and

addressing them before a system is brought into production.

Best Practices Process

The typical best practices process for LoadRunner includes four phases: preparation, development,

execution, and results summary.

• Preparation. Prior to using LoadRunner, the project manager performs such preparation tasks as

planning, designing, configuring the environment setup, and completing product training.

• Development. The second phase involves creating the scenario and test scripts that will be used to

load the system.

• Execution/Analysis. The third phase includes running the scenario. The data gathered during the run

is then used to analyze system performance, develop suggestions for system improvement, and

implement those improvements. The scenario may be iteratively rerun to achieve load test goals.

• Results Summary. The purpose of last phase is to report the outcome of the work performed for the

load test.

An example of the LoadRunner best practices process.

The complete best practices process involves accurately modeling system load, developing tests to create

that load, driving that load against the system, debugging system issues that are identified, and iteratively

rerunning tests. This process provides a means to fully test the system and develop considerable

confidence in system performance. It typically requires a minimum of three months to complete.

Similarly, the abbreviated best practices process is used to perform a sanity check of the system. It

quickly gathers preliminary results about system performance and reliability with limited planning and a

small number of representative scripts. It typically requires four weeks to complete.

This next section will describe the best practices process in more details. Later in this paper, the

abbreviated best practices process will also be described.

APPLICATION DELIVERY

WWW.MERCURY.COM 3

APPLICATION DELIVERY

Preparation

Preparation is the first step of the best practices process.

The first step in a successful implementation is to perform preparation tasks before using LoadRunner.

It includes planning, analysis/design, defining “white box” measurement, configuring the environment

setup, completing product training, and making any needed customization. The sample LoadRunner

implementation provides a boilerplate to assist in this effort. The preparation phase can typically be

completed in one month.

Planning

The first step for testing is to define the implementation goals, objectives, and project timeline. The

output of this process should include writing a planning document that defines all issues going forward.

The sample LoadRunner implementation contains an example.

The first element of the planning document should include the project goals. The goals broadly define

the problems that will be addressed and the desired outcome for testing. A typical goal would be:

“Company ABC is considered to be a high-risk SAP implementation based on its high transaction,

printing, and data volumes. The goal is to conduct a series of load tests in order to identify

performance/operational bottlenecks and recommend improvement measures.”

The second element is to outline the project objectives. The objectives are measurable tasks that, once

completed, will help meet the goals. A typical set of objectives would be:

• Estimate the concurrent user utilization and transactional volumes for the FI, MM, and SD modules

for the North American business unit.

• Emulate that utilization and measure system response time.

• Identify performance/operational bottlenecks and recommend performance-improvement measures.

WWW.MERCURY.COM 4

APPLICATION DELIVERY

Next, a project outline will need to be developed so that the sequence, duration, and staff responsibility

for each implementation task is clearly defined.

In summary, project managers and/or technical leads typically perform the planning phase in

conjunction with the implementation teams.

Analysis/Design

The analysis/design phase specifies the tests that will be constructed. The design should include

scenario definition, user description/activity, transaction description/volume, step-by-step transaction

semantics, and transaction data.

In this context, the analysis/design should first identify a set of scenarios that model periods of critical

system activity. Examining the operational profile of the system derives this. This analysis is especially

important in global operations where one continent’s batch processing is running concurrently with

another continent’s online processing.

For example, in the following figure, one scenario should include testing system performance from

2 p.m. to 3 p.m. when EDI sales, Human Sales Order Entry, and Picking/Packing are all running

concurrently. A second scenario might be from 8 p.m. to 9 p.m. when batch processing commences.

Typically each scenario will address one of the load test objectives.

WWW.MERCURY.COM 5

A sales and distribution operational profile. Shaded area is Day Time Online Processing.

Unshaded area is Night Time Batch Processing.

APPLICATION DELIVERY

Each scenario will have a number of components. The first is the number and type of users:

The number and type of users.

The second component includes the type and frequency of business processes for each user:

The business process transaction frequency.

The third component is to set up each business process in a step-by-step fashion. This includes notes

for data input and performance measurement. These steps should contain enough information that an

individual with limited application experience can work effectively:

A step-by-step business-process definition.

The last component is to define the data used by each business

process:

The more detailed and accurate this information, the more reliable

the stress test. Experience shows that it is effective to model 80

percent of the user population and/or transaction. It is difficult and

time-consuming to achieve greater accuracy. This is typically

modeled by five to 10 business processes per application module.

WWW.MERCURY.COM 6

ORDER-ENTRY CLERK SHIPPING CLERK GL ACCOUNTANT ...

Users 100 50 10 ...

BUSINESS PROCESS ORDER-ENTRY CLERK SHIPPING CLERK GL ACCOUNTANT ...

Create Order 10/hr

Display Order 5/hr

Ship Order 15/hr

Generate Invoice 5/hr

STEP DATA RESULT

Enter the Create Order Screen va01 “Create Sales Order: Initial Screen” should appear

Number in the OK Code

Fill in the Required Fields Order Type = <OT>

Sales Org = <SO>

Dist. Channel = <DC>

Start Timing “Single Line Entry”

Hit Return “Create Standard Order: Overview — Single Line Entry”

should appear

End Timing “Single Line Entry”

...

An explanation of the business process data.

<OT> <SO> <DC>

OR 1000 10

OR 3000 10

TA 0010 02

...

APPLICATION DELIVERY

White Box Measurement

The white box measurement section defines the tools and metrics used to measure internal system-

under-test (SUT) performance. This information helps to pinpoint the cause of external performance

issues. It also leads to recommendations for resolving those issues. The following table describes an

abbreviated list of common metrics for SAP R/3 with an Oracle database running on an HP server:

WWW.MERCURY.COM 7

CPU MANAGEMENT

PARAMETER IDEAL REQUIREMENT MEASURING TOOL MEASURED VALUE REMARKS

Utilization None of the CPUs should have utilization GlancePlus - CPU 50 percent High CPU idle time indicates a machine with

of more than 95 percent. Screen resources to spare, warranting a downsizing.

Load Average No more than three processes should wait GlancePlus - CPU OK

for the CPU. Screen

CPU Intensive Any non-Oracle, HP system processes GlancePlus - Main OK

Processes utilizing CPU intensively warrant attention. Screen

MEMORY MANAGEMENT

PARAMETER IDEAL REQUIREMENT MEASURING TOOL MEASURED VALUE REMARKS

Swapping Minimal to no swapped-out processes GlancePlus None Since the total system memory is limited,

- Memory Screen size of SGA and UNIX buffers would have

a direct impact on swapping and paging.

vmstat -S 5 9

Paging Minimize page faults GlancePlus Minimal to None

- Memory Screen

sar -p 10 10

Data Buffer Hit More than 70 percent CCMS > 80 percent Tune by increasing the

Ratio DB_BLOCK_BUFFERS.

DISK MANAGEMENT

PARAMETER IDEAL REQUIREMENT MEASURING TOOL MEASURED VALUE REMARKS

High Disk Activity Disk should have less than 50-70 I/Os per GlancePlus - Minimal

second. Also, the disks should be less than Disk Screen

60 percent busy.

sar -d 5 2

Long Disk Queues Minimal to no disk request queue. A queue GlancePlus - Minimal

of 2-4 warrants attention. Disk Queues

sar -d 5 2

Balanced Disk I/O Minimal spread in the disk activity among the GlancePlus - Tablespace layout

Oracle data disks. Disk Screen exercise required

Server Manager

DATABASE MANAGEMENT

PARAMETER IDEAL REQUIREMENT MEASURING TOOL MEASURED VALUE REMARKS

Full Table Scans No full table scans for long tables (more than CCMS About 5 percent of Either creating or reordering the indexes

5 data blocks), if less than 20 percent of the the total table scans. on the table can avoid full table scans

rows are to be retrieved. on long tables.

Unindexed Tables All tables should have at least a primary index. CCMS None

An example of the white box measurement metrics.

APPLICATION DELIVERY

Environment Setup

The purpose of the environment setup phase is to install and configure the system under test. Bringing

up the system is a requirement for any testing activities. Preparation includes setting up hardware,

software, data, LoadRunner, and white-box tools. The system’s business processes should function

correctly.

Product Training

The product-training phase educates the personnel who will be using LoadRunner. This training includes

classroom material and mentoring on the system. After the product training, the test team should then

have the skills required to start implementing the design.

Optional Customization

Customization, the final phase of the preparation section, is optional. This is required for environments

that LoadRunner does not support “out-of-the-box.” For example, customization would include building

a record/replay solution for a unique environment.

Development

During the development phase, the test team builds the tests specified in the design phase. Typically

development requires considerable effort, typically one month of project time. This depends on the

experience of the staff, the number of tests, test complexity, and the quality of the test design.

This estimate is based upon common “rules of thumb” and typical project size. New LoadRunner users

who have just completed training can build one script per day, and experienced users can build two

scripts per day. Typical projects have two to three individuals and 50 scripts. This also builds in time lost

for such unexpected events as environment setup issues, incomplete design, etc. This is discussed in

more detail under common implementation issues (See page 14).

The development phase in the best practices process.

WWW.MERCURY.COM 8

APPLICATION DELIVERY

Initial Script Development

It is desirable to have a high degree of transparency between virtual users and real human users. In

other words, the virtual users should perform exactly the same tasks as the human users.

At the most basic level, LoadRunner offers script capture by recording test scripts as the users navigate

the application. This recording simplifies test development by translating user activities into test code.

Scripts can be replayed to perform exactly the same actions on the system. These scripts are specified

in the design and should be self-explanatory. In any case, there should be functional support available

to assist if there are any system functional anomalies.

As tests are developed, each test should first be built with one user, static data, on a local script

development machine — the simplest case of script development. The script should be debugged to

consistently replay. Dependencies (data consumption, correlation, preparation, cleanup, etc.) should be

well understood.

Parameterization

Script recording alone is only a beginning. Replaying the same users’ actions is not a load test. This is

especially true for large multi-user systems where all the users perform different actions. Virtual user

development should create a more sophisticated emulation — users should iteratively perform each

business process with varying data.

Script development next extends the tests to run reliably with parameterized data. This process reflects

the randomness of the user-population activity. Once virtual users run with development data sets, that

data should be saved with the tests.

Multi-User Debug

Finally, tests should be run with a handful of concurrent users. This helps to resolve multi-user issues

like locking and data consumption. Performing multi-user functional verification during script

development will save considerable time during the execution phase.

Finally, scripts (with data, GUI maps, and any other needed component) should be saved into a

“golden” script area. This may be a configuration management system, or simply a common network

drive. The tests saved here will be used in the execution phase.

Build Volume Data

In parallel to script development, volume data should be constructed to support the execution of the

load test. Typically business processes consume data — each data value may be used only once. As a

result, there needs to be sufficient data to support large numbers of users running for a number of

iterations — often 10,000 items or more.

WWW.MERCURY.COM 9

APPLICATION DELIVERY

Execution/Analysis

The execution/analysis phase is an iterative process that runs scenarios, analyzes results, and debugs

system issues.

Test runs are performed on a system that is representative of the production R/3 environment.

LoadRunner is installed on driver hardware that will create traffic against the system under test. This

work may be done at the customer site or a hardware vendor benchmark facility.

Each scenario should run for at least an hour. This is done to gather statistically significant data on

system performance. Any white-box tools used for internal system performance measurement should

capture data during the run.

The execution/analysis stage in the best practices process.

The system should be loaded with enough data to support three or four scenario runs without a refresh.

This should be done at the end of each day to give the team optimal productivity.

High-skilled individuals then monitor the system during execution. They use LoadRunner information and

white-box information to analyze the run. Based upon this information, recommendations may be

suggested and implemented on the system. This process is performed iteratively until the system

performs up to expectations. This activity usually requires a dozen iterations to complete system tuning.

Typically the execution/analysis phase requires one month and should be completed one month before

production system deployment. Execution/analysis is best separated into a number of phases to most

effectively debug system issues that are detected.

WWW.MERCURY.COM 10

APPLICATION DELIVERY

Light Load

The first step is to install the system under test and successfully run the scenario’s test scripts with a

small numbers of users.

Since the scripts functioned properly in the development environment, the emphasis should be to

recreate this functional environment for execution. This is important if “production-like” hardware is

added to an in-house environment or if the project transitions to a hardware vendor benchmark facility.

Any “new” script execution errors will typically indicate system configuration differences. It is advisable

to avoid script modifications at this stage and concentrate on system-under-test installation.

Moderate Load

The second step is to run a moderate load. This will help to flush out gross system issues that do not

affect functionality. The moderate load should be 25 to 50 percent of the total user count or transaction

volume.

Heavy Load

Finally the last step is to run a full-scale load test. This typically consumes 50 percent of the total

execution/analysis time. Once the entire scenario is running, the effort shifts to analyzing the

transaction response times and white-box measurements. The goal here is to determine if the system

performed properly.

Typically two activities proceed in parallel — analyzing LoadRunner transaction response time data and

white-box performance data. It is important to identify long LoadRunner transaction response times and

internal system performance metrics that are out of range.

There is a strong relationship between this data. A long LoadRunner response time often points to a

white-box performance metric out of range. Conversely, a white-box performance metric may cause a

high LoadRunner transaction response time.

Typically white-box performance metrics help to identify areas of improvement for the system under

test. The LoadRunner transaction response time will tell whether the system is functioning adequately.

It is important to note that technical staffs with administration/tuning experience are extremely valuable

in this process. Individuals with database, networking, server, and application expertise are required.

From this analysis, hypotheses are generated and action items taken. The scenarios are then rerun to

validate attempts to fix issue(s). A typical scenario will require more than a dozen iterations to achieve

production-level quality.

WWW.MERCURY.COM 11

APPLICATION DELIVERY

Results Summary

Finally, the results summary describes the testing, analysis, discoveries, and system improvements, as

well as the status of the objectives and goals. This typically occurs after the completion of testing and

during any final “go live” preparation that is outside the scope of testing.

The results summary in the best practices process.

Abbreviated Best Practices Process

Often testing must be compressed into an aggressive timeframe or for upgrades to new R/3 systems

that were previously load tested. This type of testing is best performed in an abbreviated best practices

process. In this case, the goal should be to perform a sanity check of the system.

This strategy would be to include a representative user concurrency and transaction throughput, but

with only a small number of simple business processes. Optimally the process may be compressed into

four to six weeks. This process is similar to the best practices process with the following modifications:

Preparation

Analysis/Design

The design should be simplified to include concurrent users, transactions, and throughput. Considerable

time savings may be achieved because this process requires little intervention from external

organizations.

The following table shows this information for a particular sales and distribution module. As is evident in

this table, Change Sales Order and Change Delivery do not have significant volumes to be considered

as key stress test elements. In an Abbreviated Best Practices Process it is recommended to limit the

scripting to five to 10 scripts.

WWW.MERCURY.COM 12

APPLICATION DELIVERY

A sales and distribution volume estimate.

Environment Setup

There is an assumption made that the test environment is available. Therefore, the system under test

should be configured and ready for testing.

Product Training

For an abbreviated LoadRunner best practices process, it is recommended to hire skilled staff so that

training is not required.

Script Development

During script development, the team should develop a total of five to 10 tests. It is advisable to assign a

functional individual, someone who understands the business processes, to the team for the duration of

scripting. The volume data should be available. In this environment, the script development should take

between one to two weeks.

WWW.MERCURY.COM 13

MODULE NUMBER OF USERS TRANSACTIONS, EMULATE AVERAGE PEAK:

NAME REPORTS, AND WITH (TRANS. PER (TRANS. PER

PRINT REQUESTS LOADRUNNER DAY/LINES DAY/LINES

PER TRANS.) PER TRANS.)

CONCURRENT NAMED

SD 150 175

Sales Orders Entry Y 3,500/20 5,000/25

Sales Return Y 500/10 750/15

Processing

Change Sales Order N 50/2 100/5

Delivery Due List Y 5,500/22 9,000/36

Change Delivery N 100/5 200/2

Packing Y 5,500/22 9,000/36

Picking Y 5,500/22 9,000/36

Invoice Printing Y 5,500/22 9,000/36

Total XXX XXX

APPLICATION DELIVERY

Execution/Analysis

There is limited compression available to the execution phase — it will minimally require two weeks. The

reduced time will compress the ability to perform system tuning. Typically the most basic tuning can be

performed, although this will address only the most glaring issues.

Results Summary

The results should be positioned as preliminary — an early indicator toward eventual system

performance.

Common Implementation Issues

This section describes the most common issues that surface during a load test on R/3 systems. It also

suggests strategies for addressing those issues.

Preparation

Planning

The biggest issue with planning is that it is not performed adequately. Time saved is often repaid many-

fold in later phases.

A good rule of thumb is to allow three months for a load test with completion at least a month before

“go live.” Preparation, development, execution/analysis, and results summary should each be allocated

one month. Typically the results summary can be performed in parallel with late-term project tasks

(data conversion/data load, user acceptance, etc.).

Analysis/Design

The first issue is to consider is, “What should I test?” and the related question “What activity does my

user community create?” In many ways this is the black art of testing. Often the vendors, system

architects, IT and business managers make educated guesses about the “representative user load

profile.” This process involves a study of the system’s operational profile. It also includes an interview-

analyze-negotiate process with the user community.

Business Processes

High-volume business processes/transactions should be built into the test. Choosing too few might

leave gaps in the test while choosing too many will expand the script creation time. It is effective to

model the most common 80 percent of the transaction throughput; trying to achieve greater accuracy

is difficult and expensive. This is typically represented by 20 percent of the business processes —

roughly five to 10 key business processes for each system module.

WWW.MERCURY.COM 14

APPLICATION DELIVERY

Margin for Error

Since load testing is not an exact science, there should be accommodations made to provide a

margin for error in the test results. This can compensate for poor design and help avoid false positives

or negatives.

A load test should include at least one “stress test” or a “peak utilization” scenario. A stress test will

overdrive the system for a period of time by multiplying the load by some factor — 120 percent or

greater. Peak utilization will address the testing of peak system conditions. This is often represented in

such questions as: “Can the system order and ship 100,000 units/day during the week before

Christmas?” “Will the system meet service-level agreements during fiscal year-end close?” “Will

European nightly batch runs slow North-American online?”

Test Environment Setup

Load testing requires a complete, stable, and independent environment for testing.

Hardware

To get reliable results, the test environment must be representative of the production environment. This

may be considered a significant investment; however, it offers the advantage that it can provide the

facilities for ongoing testing. This is particularly useful in maintenance or system expansion. It can also

facilitate a permanent testing organization.

Another option is to schedule time with a hardware vendor benchmark facility. They can provide the

necessary physical hardware and hardware expertise to support a test. The disadvantage is that it

needs to be repeated for each subsequent deployment.

Software

In addition to the hardware required for a load test, the test bed must also have fully installed and

functioning software. Since LoadRunner functions, “just like a user,” the system would need to

successfully support all user actions.

Network

Additionally the company’s network infrastructure is shared by computer systems that create a

significant amount of “background noise.” While it is probably impossible to accurately model each and

every network access (FTP, print, Web browse, e-mail download, etc.), it is judicious to examine the

current network utilization and understand the impact of incremental network traffic.

Geography

Often the system under test will support a global enterprise. In this environment tests may often need

to be run at remote sites across the WAN. WAN connectivity needs to be emulated in the lab, or

assumptions must be made.

WWW.MERCURY.COM 15

APPLICATION DELIVERY

Interfaces

Large systems seldom service a company’s entire information needs without interfacing to existing

legacy systems. The interfaces to these external data sources need to be emulated during the test, or

excluded with supporting analysis and justification.

Customization

Customization of LoadRunner is possible and has been performed in any number of environments. It

typically takes considerable engineering effort and is not an “out-of-the-box” solution. Specifically

customization of LoadRunner requires:

• A LoadRunner expert familiar with template programming.

• A system specialist familiar with the application API (application programming interface) and

administration.

• An additional one month of project time to investigate and construct a custom LoadRunner driver, or

determine if it is not possible.

Script Creation

Script creation productivity can be estimated by the “rules of thumb” from the previous section. These

estimates may be strongly affected by the following issues. Any of these issues can easily double

estimated script-development time.

Functional Support

One of the most important factors in script creation productivity is the amount of functional support

provided — access to individuals who understand application functionality. This manifests itself when a

test team member encounters a functional error while scripting — the business process won’t function

properly. The team member typically has to stop since he or she is not equipped with the skills to solve

the issue. At that point, script creation is temporarily halted until a functional team member helps

resolve the issue.

Test Design Quality

The second script-development factor is the quality of the test design. Ideally the test design should

specify enough information for an individual with little or no application experience to build tests.

System test documentation is often an excellent source of this information. Often designs are incorrect

or incomplete. As a result, any omission will require functional support to complete script development.

Business Process Stability

To load/stress test a large system, the system’s business processes first need to function properly. It is

typically not effective to attempt to load test a system that won’t even work for one user. This typically

means that the system needs to be nearly completed.

WWW.MERCURY.COM 16

APPLICATION DELIVERY

System Changes

Finally, the last factor in script development is the frequency of system changes. For each system

revision, test scripts will need to be evaluated. Each test will need to be unaffected, require simple

rework, or complete reconstruction. While testing tools are engineered to minimize the effect of system

change, limiting the system changes will reduce scripting time.

Test Data Load

The system will need to be loaded with development test data. This data often comes from a legacy-

system conversion and will be a predecessor to the volume data for the test.

Execution/Analysis

System Changes

Often there is a shift between the systems used for development and execution/analysis. This may be

created by transitions between environments onsite, or a physical move to a hardware benchmark facility.

The first step is getting the entire test to execute properly with single users. This typically involves

working with each test to account for system changes. Difference in data load, configuration, system

version, etc. can cause issues. It is recommended to perform a backup of the development environment

that may be restored for execution. This should help to avoid version and configuration issues.

This analysis is especially important in global operations where one continent’s batch processing is

running concurrently with another continent’s online processing.

Data Seeding

Often business processes consume data (e.g., a shipping request requires a sales order that, once

shipped may not be shipped again), and their tests will also consume data. Because of this the system

should be “pre-seeded” with data consumed by the testing process. To keep testing productivity high,

there should be enough data to support several iterations before requiring a system refresh — which

should be done each night.

Volume Data

System performance may vary widely with the volume of system data. The system under test should

have sufficient data to model the size of the product database at the time of deployment. It is also

judicious to expand the database size to model the system performance with an additional one to two

years of data in the system.

WWW.MERCURY.COM 17

APPLICATION DELIVERY

System Support

Just as the development requires functional support, execution/analysis requires system support

because the test team may not understand the system architecture and technology.

The purpose of system support is to help interpret LoadRunner results and white-box data. While

LoadRunner will describe what occurred, the system support can help to describe why and suggest

how to remedy the problems. These suggestions can be implemented and the tests rerun.

This iterative process is a natural part of the development process, just like debugging.

Summary

Corporations with planned long-term reliance on R/3 systems are learning too late about the costly

consequences associated with failing to align a continuous and repeatable load testing strategy with

their strategic R/3 implementations. Employing repeatable load testing practices upfront eliminates IT

from having to take the fire-drill approach to addressing such problems as poor performance, system

incompatibilities, or complex business process reengineering near or into production. The business

benefit for utilizing the best practices for load testing described in this document, whether using the full

or abbreviated best practices process, will result in higher performance, less application re-work, less

maintenance, and less downtime cost in production.

Download a 10-day trial of Mercury LoadRunner® and see how load testing your applications in

pre-production will save you time and money when you’re ready to go live.

http://download.mercuryinteractive.com/cgi-bin/portal/download/loginForm.jsp?id=160&source=1-

102709805#d5160

WWW.MERCURY.COM 18

© 2004 Mercury Interactive Corporation. Patents pending. All rights reserved. Mercury Interactive, the Mercury Interactive logo, the Mercury logo, and Mercury LoadRunner are trademarks or registered trademarks of Mercury Interactive

Corporation in the United States and/or other foreign countries. All other company, brand, and product names are marks of their respective holders. WP-1080-0604

Mercury Interactive is the global leader in business technology optimization (BTO). We are committed to helping customers optimize the business value of IT.

WWW.MERCURY.COM

