
Advanced Technology Research

Using ZSI

Revision 1.1

August 1, 2007

c©Copyright 2007, NORTEL. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts.

Document prime: Chris Hobbs
Document Number: IS-2007-0008
Contributors:

Contents

1 Introduction 2
1.1 What is ZSI? . 2
1.2 Version . 2
1.3 Context . 2
1.4 Other Documentation . 2

2 Installation 4

3 Code Generation 5
3.1 Generating the Consumer (Client) . 5
3.2 Generating the Server . 6

4 Examples 7
4.1 Creating a Simple Client . 7
4.2 Creating a Slightly More Sophisticated Client 8
4.3 Creating a Simple Server . 9

5 Gotchas and Tips 11
5.1 Tracing . 11
5.2 DateTime Fields . 11
5.3 Duration Fields . 12
5.4 Exceptions . 12
5.5 Handling Complex Elements . 13

Nortel 1 Using ZSI, Revision 1.1

CHAPTER 1

Introduction

1.1 What is ZSI?

The Zolera Soap Infrastucture (ZSI) is a Python Package that implements the SOAP 1.1
specification.

Starting with the WSDL definition of a web service it generates the necessary Python
stubs, skeletons and helper classes to speed the creation of consumers (clients) and servers.

The ZSI homepage is at http://pywebsvcs.sourceforge.net/.

1.2 Version

This manual refers to version 2.0 of ZSI published on 2nd February 2007.

1.3 Context

This document assumes that you want to create a web services server and consumer start-
ing with WSDL that you already have available: either because it forms part of a standard
(e.g., Parlay-X) or because you have written it yourself. As reference [1] points out, pro-
ducing the server from the WSDL rather than the WSDL from the server avoids locking an
implementation in to a particular vendor’s tool set and promotes interoperability.

1.4 Other Documentation

Various documents are available related to ZSI but those aimed at using (rather than de-
veloping) ZSI tend to be either excellent but somewhat out-of-date (e.g., reference [1]) or
excellent but only addressing the rpc/literal style. There also seems to be various versions

Nortel 2 Using ZSI, Revision 1.1

http://pywebsvcs.sourceforge.net/

1.4 Other Documentation 3

of the user and developer manuals with the same version number but different content:
make sure that you have the versions dated February 2007.

Useful documents include:

• Reference [2]: the Developer’s Guide

• Reference [3]: the User’s Guide

• Reference [1]: a description of implementing both rpc/literal and document/literal
servers and then accessing them from Excel XP Visual Basic, gSOAP C/C++ and
Applix spreadsheet consumers. Reference [1] describes the use of ZSI version 1.6.1
(released in December 2004). The current version at the time of writing is 2.0 (re-
leased in February 2007).

• Reference [4]: a description (in German) of developing a consumer and server (albeit
using rpc/literal) with ZSI. It also contains information on the use of the Eclipse Web
Tools Platform (WTP) WSDL editor.

Nortel Using ZSI, Revision 1.1

CHAPTER 2

Installation

Installation of ZSI follows the normal method for installing Python modules:

• Download the tar file from Sourceforge. This will probably be called something like
ZSI-2.0.tar.gz.

• Unzip the tar file:

gunzip ZSI-2.0.tar.gz
tar xvf ZSI-2.0.tar

• Go into the directory where the files have been created and invoke the Python in-
staller:

cd ZSI-2.0-rc3
python setup.py install

If you are not running as root then you may need to enter the command as

sudo python setup.py install

or read the documentation of the Python installer to direct the installation to a direc-
tory to which you have write access.

The installation is now complete. It includes a large number of test cases that should be
run to ensure the integrity of the system. These test cases are also useful for hints on how
to use the ZSI software.

Nortel 4 Using ZSI, Revision 1.1

CHAPTER 3

Code Generation

Note: the descriptions in this section and the examples in chapter 4 all assume that the
services being created and invoked are of the “document/literal” rather than “rpc/literal”
style. Reference [4] deals exclusively with “rpc/literal” services and reference [1] covers
both.

3.1 Generating the Consumer (Client)

Given the WSDL, the code outline is generated by using the command

wsdl2py --complexType --file=ZonedLocation.wsdl

This extracts the service name from the wsdl:service element in the WSDL (“Zoned-
Location” in this case) and uses it to create two files:

1. ZonedLocation_services.py that contains a consumer stub. In particular, it contains:

• a Locator class. An instance of this class can be used to create an instance of a
binding through which the service can be invoked.

• a class for each operation that can be invoked on the server. This can be used to
construct a message to be sent to the server.

2. ZonedLocation_services_types.py that contains various helper classes associated
with the types defined in the WSDL.

The -complexType parameter causes wsdl2py to generate helper methods (getters, setters
and factory methods) for each complex type in the WSDL. As can be seen from the exam-
ples in sections 4.1 and 4.2, it is not necessary to have a local copy of the WSDL: it can be
accessed across the Internet.

Nortel 5 Using ZSI, Revision 1.1

6 Code Generation

3.2 Generating the Server

To create the basic code for a server, the following command should then be run. Note that
wsdl2py needs to be run first.

wsdl2dispatch --extended --file=ZonedLocation.wsdl

This creates the file:

ZonedLocation_services_server.py that contains a framework for the server.

The use of these generated files is illustrated in examples in chapter 4.

Using ZSI, Revision 1.1 Nortel

CHAPTER 4

Examples

4.1 Creating a Simple Client

The site http://www.xmethods.net/ contains a number of links to web services of dif-
ferent sorts. These can provide test services for simple consumers.

This example uses the “Mighty Maxims” service that provides a Document (rather than
rpc) interface to a daily quotation. To access the service carry out the following process:

1. Use the service WSDL to generate consumer software:

wsdl2py -bu http://saintbook.org/MightyMaxims/MightyMaxims.asmx?WSDL

The b option is the short-form of -complexType and u specifies a remote loca-
tion (rather than local file) for the WSDL file. This will generate the two files
Maxim_services.py and Maxim_services_types.py.

2. Write the necessary consumer code. In this case there are no elements to be sent to
the service—it simply needs to be invoked and the result printed. A suitable program
might be:

import the generated class stubs
from Maxim_services import *

get a port proxy instance
loc = MaximLocator()
port = loc.getMaximSoap()

create a new request

Nortel 7 Using ZSI, Revision 1.1

http://www.xmethods.net/

8 Examples

req = ForTodaySoapIn()

call the remote method
resp = port.ForToday(req)

print the resulting quotation
print resp.ForTodayResult

3. Run the program. The quotation of the day will be displayed.

Note that the invocation port = loc.getMaximSoap() could have provided a URL for
the service. The default is to take the URL from the WSDL.

4.2 Creating a Slightly More Sophisticated Client

As with the consumer in section 4.1, this consumer invokes a remote Document service: a
service to convert Celsius temperatures to Fahrenheit. This service is one of the ones listed
on http://www.xmethods.net/. It is slightly more complex than the consumer in section
4.1 as it requires an input parameter. The basic process is the same as before:

1. Use the service WSDL to generate consumer software:

wsdl2py -bu http://webservices.daelab.net/temperatureconversions/TemperatureConversions.wso?WSDL

This generates the two files TemperatureConversions_services.py and Temper-
atureConversions_services_types.py.

2. Write the necessary consumer code. A suitable program might be as follows (note
the misspelling of Celsius in the WSDL and therefore in the program):

import the generated class stubs
from TemperatureConversions_services import *

celsiusTemp = 32

get a port proxy instance
loc = TemperatureConversionsLocator()
port = loc.getTemperatureConversionsSoapType()

create a new request
req = CelciusToFahrenheitSoapRequest()
req._nCelcius = celsiusTemp

Using ZSI, Revision 1.1 Nortel

http://www.xmethods.net/

4.3 Creating a Simple Server 9

call the remote method
resp = port.CelciusToFahrenheit(req)

print the result in Fahrenheit
print "%s degrees C = %s degrees F" % (celsiusTemp,

resp.CelciusToFahrenheitResult)

3. Run the program. The result of the conversion is displayed:

32 degrees C = 89.6 degrees F

4.3 Creating a Simple Server

In this example we create a server to respond with quotations using the same WSDL-
defined interface as the remote server in section 4.1. We then use the same consumer code
(with the new URL added) as the consumer to access it.

To create this server:

1. Run

wsdl2py -bu http://saintbook.org/MightyMaxims/MightyMaxims.asmx?WSDL

to generate the necessary stubs (unless you already did this following the example in
section 4.1).

2. Run

wsdl2dispatch -u http://saintbook.org/MightyMaxims/MightyMaxims.asmx?WSDL

to generate the server skeleton.

3. Modify the “port=” line in the client listed in section 4.1 to read

port = loc.getMaximSoap("http://localhost:8080/cwlh")

so that it uses a server on the local host rather than the remote server.

4. Write a server to return a quotation when invoked. Suitable code for this is as follows

import sys
import random
from ZSI.ServiceContainer import AsServer
from Maxim_services_server import *

Nortel Using ZSI, Revision 1.1

10 Examples

quotations = ["All men by nature desire knowledge. Aristotle",
"Man is by nature a political animal. Aristotle",
"Many people would sooner die than think. In fact they do. Russell",
"Science may be described as the art of systematic over-simplification. Popper",
"The smallest minority on earth is the individual. Rand",
"The limits of my language mean the limits of my world. Wittgenstein"]

class Service(Maxim):

def soap_ForToday(self, ps):
response = ns0.ForTodayResponse_Dec().pyclass()
response.ForTodayResult = random.choice(quotations)
return response

if __name__ == "__main__" :
AsServer(8080, (Service(’cwlh’),))

You may, if you wish, replace the quotations with your own.

This code makes use of the AsServer class contained in the ZSI libraries. It creates
a web server and automatically dispatches incoming requests.

5. Point a browser at http://localhost:8080/cwlh?wsdl and note that the WSDL
for the service is returned.

6. Run the consumer and note the wise quotation provided.

Using ZSI, Revision 1.1 Nortel

http://localhost:8080/cwlh?wsdl

CHAPTER 5

Gotchas and Tips

This chapter contains a few tricks that the current author found necessary when using ZSI.

5.1 Tracing

Tracing of the exchanged messages can be switched on at the client by adding the
tracefile=<filepointer>

argument to the call to create the binding. So, in the client example given in section 4.2,
the line

port = loc.getTemperatureConversionsSoapType()

would be coded as

fp = file("/home/cwlh/tmp/tracefile","w")
port = loc.getTemperatureConversionsSoapType(tracefile=fp)

Do not forget to close the file at some convenient point.

5.2 DateTime Fields

ZSI does not expect a datetime to be a string in the standard xs:datetime format. Instead
it expects a list of 9 elements in the format returned by datetime.datetime.now() or
equivalent methods. Note that this is not the format returned by time.gmtime().

Consider, for example, an element called EventTime in a WSDL specification of type
DateTime. Setting this value in the consumer might be done as follows:

dt = list(datetime.datetime.now().timetuple())
dt[6] = 0
request._EventTime = dt

Nortel 11 Using ZSI, Revision 1.1

12 Gotchas and Tips

The rather strange command to set dt[6] to zero is to ensure that the milliseconds field
is not rendered in the XML—apparently necessary to ensure compatibility across various
platforms.

The field is received at the server in the form indicated by this example:

eventTime = request.EventTime
print eventTime
(2007, 7, 16, 13, 47, 40, 0, 0, 0)

Note that the time appears in the form of a tuple rather than a list.

5.3 Duration Fields

ZSI does not expect a duration to be a string in the standard xs:duration format. Instead
it expects a list of 6 elements in the format

[year, month, day, hour, minute, second]

so a duration of 3 days, 4 hours 5 minutes and 2 seconds would be represented as [0, 0, 3,
4, 5, 2].

At the server, a duration is delivered as a 9-tuple with the first six elements as delivered
at the client and the last three elements apparently set to 0.

5.4 Exceptions

Consider a service operation that can return either a message or a SOAP Fault. A portion
of the WSDL may appear as follows:

<wsdl:operation name="ExchangeMessages">
<wsdl:input message="tns:ExchangeMessagesRequest"/>

<wsdl:output message="tns:ExchangeMessagesResponse"/>
<wsdl:fault name="fault" message="tns:ExchangeMessages_faultMsg"></wsdl:fault>
<wsdl:fault name="fault1" message="tns:ExchangeMessages_fault1Msg"></wsdl:fault>

</wsdl:operation>

A thorny question is how to generate the faults at the server. With the ZSI v2.0 code as
it is provided, this is not possible. Different work-arounds are available and the simplest
(provided by Joshua Boverhof: many thanks!) is probably to add the following lines to the
FaultFromException method in the source file fault.py (remembering to regenerate the
fault.pyc as appropriate):

if isinstance(ex, Fault):
return ex

Using ZSI, Revision 1.1 Nortel

5.5 Handling Complex Elements 13

immediately before elt = ZSIFaultDetail(string=exceptionName....
This has the effect of allowing the server to generate any sort of SOAP fault by creating

an instance of the ZSI.Fault class and then raising an exception.
For example, at the point in the server where a response message would normally be

created and it is intended to produce a fault instead:

from ZSI import Fault

....

response = ns0.NoResponseFault_Dec().pyclass()
response.ItemIdentifier = "FredBloggs"
fault = Fault(Fault.Server,

"NoResponseFault",
None,
response)

raise fault

In this case ns0.NoResponseFault_Dec has been generated automatically from the WSDL
fault definition by wsdl2py and ItemIdentifier is one of its elements.

If the consumer (client) is also written using ZSI then the handling of this SOAP fault
is simple:

try:
response = port.ExchangeMessages(request)

except Exception, ex:
pull the exception apart
typeOfFault = ex.fault.string
itemIdentifier = ex.fault.detail[0]._ItemIdentifier

5.5 Handling Complex Elements

Assume that you have a server that needs to return a complex structure (the same applies,
mutatis mutandis, for a consumer (client) needing to create or pick apart a complex struc-
ture). As an example take the following WSDL which is extracted from a response element
definition (annotation elements have been removed to keep the listing short):

<xsd:complexType name="BuildTeamListResponseElementType">
<xsd:sequence>

<xsd:element name="CandidateTeamList"
type="tns:Role" minOccurs="1" maxOccurs="unbounded">
/xsd:element>

Nortel Using ZSI, Revision 1.1

14 Gotchas and Tips

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Role">
<xsd:sequence>

<xsd:element name="RoleName"
type="xsd:string" minOccurs="1" maxOccurs="1">

</xsd:element>
<xsd:element name="Quantity" type="xsd:int"

minOccurs="1" maxOccurs="1">
</xsd:element>
<xsd:element name="Candidate" type="xsd:string"

minOccurs="1" maxOccurs="unbounded">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

The element to be returned consists of a single instance of a CandidateTeamList which,
in turn, consists of any number of Rôles which, in turn, consist of a RôleName, a Quantity
and one or more Candidates.

When the -complexType option is used on the invocation of wsdl2py, a structure
for Rôle with factory and access functions is generated automatically in ServiceName_-
services_types.py. This allows the element to be generated easily using helper func-
tions of the form new_XXXXX and set_element_XXXXX:

response = BuildTeamListResponse()
teamList = response.new_CandidateTeamList()
teamList.set_element_Quantity(16)
teamList.set_element_RoleName("Facilitator")
teamList.set_element_Candidate(["fred", "joe", "jim", "bert"])
response.CandidateTeamList = [teamList]
return response

Using ZSI, Revision 1.1 Nortel

Bibliography

[1] Holger Joukl. Interoperable WSDL/SOAP Web Services: Python ZSI, 2005.

[2] Rich Salz. ZSI: The Zolera Soap Infrastructure developer’s guide, 2007.

[3] Joshua Boverhof. ZSI: The Zolera Soap Infrastructure user’s guide, 2007.

[4] Richard Mutschler. PythonSOAP Tutorial: Erstellung eines WEB-Service mit ZSI,
2007.

Nortel 15 Using ZSI, Revision 1.1

	Introduction
	What is ZSI?
	Version
	Context
	Other Documentation

	Installation
	Code Generation
	Generating the Consumer (Client)
	Generating the Server

	Examples
	Creating a Simple Client
	Creating a Slightly More Sophisticated Client
	Creating a Simple Server

	Gotchas and Tips
	Tracing
	DateTime Fields
	Duration Fields
	Exceptions
	Handling Complex Elements

